Probe Design, Production, and Applications

  • Marilena Aquino de Muro
Part of the Springer Protocols Handbooks book series (SPH)

1. Introduction

A probe is a nucleic acid molecule (single-stranded DNA or RNA) with a strong affinity with a specific target (DNA or RNA sequence). Probe and target base sequences must be complementary to each other, but depending on conditions, they do not necessarily have to be exactly complementary. The hybrid (probe–target combination) can be revealed when appropriate labeling and detection systems are used. Gene probes are used in various blotting and in situ techniques for the detection of nucleic acid sequences. In medicine, they can help in the identification of microorganisms and the diagnosis of infectious, inherited, and other diseases.

2. Probe Design

The probe design depends on whether a gene probe or an oligonucleotide probe is desired.

2.1. Gene Probes

Gene probes are generally longer than 500 bases and comprise all or most of a target gene. They can be generated in two ways. Cloned probes are normally used when a specific clone is available or when the DNA sequence is...


Oligonucleotide Probe Gene Probe Nucleic Acid Sequence Nick Translation Polymerase Chain Reaction Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Keller GH, Manak MM (1989) DNA probes, Stockton, NYGoogle Scholar
  2. 2.
    Sambrook J, Russell DW (2001) Molecular cloning:a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  3. 3.
    Karcher SJ (1995) Molecular biology:a project approach. Academic, San Diego, CAGoogle Scholar
  4. 4.
    Hugenholtz P, Tyson GW, Blackall LL (2002) Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. In: Aquino de Muro, Rapley R (eds) Gene probes:principles and protocols. Humana, Totowa, NJ, pp. 29–42Google Scholar
  5. 5.
    Boehringer Mannheim GmbH (1995) The DIG system user's guide for filter hybridisation. Boehringer Mannheim, Mannheim, GermanyGoogle Scholar
  6. 6.
    Boehringer Mannheim GmbH (1996) Nonradioactive in situ hybridisation man-ual:application manual, 2nd edn. Boehringher Mannheim GmbH, Mannheim, GermanyGoogle Scholar
  7. 7.
    Alphey L, Parry HD (1995) Making nucleic acid probes. In: Glover DM, Hames BD (eds) DNA cloning 1:core techniques, IRL, Oxford, pp. 121–141Google Scholar
  8. 8.
    Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analy Biochem 132:6–13CrossRefGoogle Scholar
  9. 9.
    Feinberg AP, Vogelstein B (1984) Addendum. Analy Biochem 137:266–267CrossRefGoogle Scholar
  10. 10.
    Aquino de Muro M, Priest FG (1994) A colony hybridization procedure for the identification of mosquitocidal strains of Bacillus sphaericus on isolation plates. J Invertebr Pathol 63:310–313PubMedCrossRefGoogle Scholar
  11. 11.
    Aquino de Muro M, Priest FG (2000) Construction of chromosomal integrants of Bacillus sphaericus 2362 by conjugation with Escherichia coli. Res. Microbiol. 151:547–555PubMedCrossRefGoogle Scholar
  12. 12.
    Garratt LC, McCabe MS, Power JB, Davey MR (2002) Detection of single-copy genes in DNA from transgenic plants. In: Aquino de Muro M, Rapley R (eds) Gene probes: principles and protocols Humana, Totowa, NJ, pp. 211–222Google Scholar
  13. 13.
    Hilario E (2002) Photobiotin labeling. In Aquino de Muro M, Rapley R (eds) Gene probes:principles and protocols. Humana, Totowa, NJ, pp. 19–22Google Scholar
  14. 14.
    Hilario E (2002) End labeling procedures. In: Aquino de Muro M, Rapley R (eds) Gene probes:principles and protocols. Humana, Totowa, NJ, pp. 13–18Google Scholar
  15. 15.
    Promega Corp (1996) Protocols and applications guide, 3rd edn. Promega Corp., Madison, WIGoogle Scholar
  16. 16.
    Schleicher & Schuell Inc (1995) Blotting, hybridization and detection: an S&S laboratory manual, 6th edn. Schleicher & Schuell, Inc., Keene, NHGoogle Scholar
  17. 17.
    Stahl DA, Amman R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial sys-tematics. Wiley, Chichester, pp. 205–244Google Scholar
  18. 18.
    Brooker JD, Lockington RA, Attwood GT, Miller S (1990) The use of gene and antibody probes in identification and enumeration of rumen bacterial species. In: Macario AJL, Conway de Macario E (eds) Gene probes for bacteria Academic, San Diego, CA, pp. 390–416Google Scholar
  19. 19.
    Stahl DA, Kane MD (1992) Methods in microbial identification, tracking and monitoring of function. Curr Opin Biotechnol 3:244–252CrossRefGoogle Scholar
  20. 20.
    Ward DM, Bateson MM, Weller R, Ruff- Roberts AL (1992) Ribosomal RNA analysis of micro-organisms as they occur in nature. Adv Microb Ecol 12:219–286Google Scholar
  21. 21.
    Orlow I, Cordon-Cardo C (2002) Evaluation of alterations in the tumor suppressor genes INK4A and INK4B in human bladder tumors. In: Aquino de Muro M, Rapley R (eds) Gene probes:principles and protocols. Humana, Totowa, NJ, pp. 43–59Google Scholar
  22. 22.
    Mendoza-Leon A, Luis L, Martinez C (2002) The β-tubulin gene region as a molecular marker to distinguish Leishmania parasites. In: Aquino de Muro M, Rapley R (eds) Gene probes:principles and protocols. Humana, Totowa, NJ, pp. 61–83Google Scholar
  23. 23.
    Brown RD, Joy Ho P (2002) Detection of malignant plasma cells in the bone marrow and peripherical blood of patients with multiple myeloma. In: Aquino de Muro M, Rapley R (eds) Gene probes:principles and protocols. Humana, Totowa, NJ, pp. 85–91Google Scholar
  24. 24.
    Nuovo G J (2002) Diagnosis of human papillomavirus using in situ hybridization and in situ polymerase chain reaction. In: Aquino de Muro M, Rapley R (eds) Gene probes:principles and protocols Humana, Totowa, NJ, pp. 113–136Google Scholar
  25. 25.
    Wang Y, Pang D, Zhang Z, Zheng H, Cao J, Shen J (2003) Visual gene diagnosis of HBV and HCV based on nanoparticle probe amplification and silver staining enhancement. J Med Virol 70(2):205–211PubMedCrossRefGoogle Scholar
  26. 26.
    Cook DW, Bowers JC, DePaola A (2002) Density of total and pathogenic (tdh+) Vibrio parahaemolyticus in Atlantic and Gulf Coast molluscan shellfish at harvest. J Food Protect 65(12):1873–1880Google Scholar
  27. 27.
    Dalsgaard A, Serichantalergs O, Forslund A et al (2001) Clinical and environmental isolates of Vibrio cholerae serogroup 0141 carry the CTX phage and the genes enconding the toxin-coregulated pili. J Clin Microbiol 39(11):4086–4092PubMedCrossRefGoogle Scholar
  28. 28.
    Kondo S, Kongmuang U, Kalnauwakul S, Matsumoto C, Chen CH, Nishibuchi M (2001) Molecular epidemiologic analysis of Vibrio cholerae O1 isolated during the 1997–8 cholera epidemic in southern Thailand. Epidemiol Infect 127(1):7–16PubMedCrossRefGoogle Scholar
  29. 29.
    Nair GB, Bag PK, Shimada T et al (1995) Evaluation of DNA probes for specific detection of Vibrio cholerae O139 Bengal. J Clin Microbiol 33(8):2186–2187PubMedGoogle Scholar
  30. 30.
    Frech G, Schwarz S (2000) Molecular analysis of tetracycline resistance in Salmonella enterica subsp. enterica serovars Typhimurium, Enteritidis, Dublin Choleraesuis, Hadar and Sàintpaul:construction and application of specific gene probes. J Appl Microbiol 89(4):633–641PubMedCrossRefGoogle Scholar
  31. 31.
    Mainil JG, Gerardin J, Jacquemin E (2000) Identification of the F17 fimbrial subunit- and adhesin-enconding (f17A and f17G) gene variants in necrotoxigenic Escherichia coli from cattle, pigs and humans. Vet Microbiol 73(4):327–335PubMedCrossRefGoogle Scholar
  32. 32.
    Fujimoto S, Umene K, Saito M, Horikawa K, Blaser MJ (2000) Restriction fragment length polymorphism analysis using random chromosomal gene probes for epidemiological analysis of Campylobacter jejuni infections. J Clin Microbiol 38(4):1664–1667PubMedGoogle Scholar
  33. 33.
    Kirkwood CD, Gentsch JR, Glass RI (1999) Sequence analysis of the NSP4 gene from human rotavirus strains isolated in the United States. Virus Genes 19(2): 113–122PubMedCrossRefGoogle Scholar
  34. 34.
    Santos MRM, Lorenzi H, Porcile P et al (1999) Physical mapping of a 670kb region of chromosomes XVI and XVII from the human protozoan parasite Trypanosoma cruzi encompassing the genes for two immunodominant antigens. Genome Res 9(12):1268–1276PubMedCrossRefGoogle Scholar
  35. 35.
    Radwanska M, Magez S, Perry-O'Keefe H et al (2002) Direct detection and identification of African trypanosomes by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 40(11):4295–4297PubMedCrossRefGoogle Scholar
  36. 36.
    Higgins GA, Mah VH (1989) In situ hybridisation approaches to human neurological disease. In: Conn PM (ed) Gene probes. Academic, San Diego, CA, pp. 183–196Google Scholar
  37. 37.
    Rigby S, Procop GW, Haase G, et al (2002) Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol 40(6):2182–2186PubMedCrossRefGoogle Scholar
  38. 38.
    Oliveira K, Haase G, Kurtzman C, Hyldig- Nielsen JJ, Stender H (2001) Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 39(11): 4138–4141PubMedCrossRefGoogle Scholar
  39. 39.
    Cloud JL, Neal H, Rosenberry R et al (2002) Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J Clin Microbiol 40(2):400–406PubMedCrossRefGoogle Scholar
  40. 40.
    El Hajj HH, Marras SAE, Tyagi S, Kramer FR, Alland D (2001) Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J Clin Microbiol 39(11):4131–4137PubMedCrossRefGoogle Scholar
  41. 41.
    Oliveira K, Procop GW, Wilson D, Coull J, Stender H (2002) Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 40(1):247–251PubMedCrossRefGoogle Scholar
  42. 42.
    Reddy CC, Jayakumar R, Kumanan K, Nainar AM (2002) Detection of rabies virus genome in brain tissues by using in situ hybridization. Indian J Anim Sci 72(1):3–5Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marilena Aquino de Muro
    • 1
  1. 1.University of Caxias of the South, Francisco Getulio VargasPetropolis, Caxias of the SouthBrazil

Personalised recommendations