Advertisement

Monoclonal Antibodies

  • Zhong J. Zhang
  • Maher Albitar
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

1. Introduction

Activation and clonal expansion of antigen-reactive B cells to mount an immune response is one of our body's most important defenses against foreign materials. Each clone of B cells is able to secrete its own unique antibody, such that an invading pathogen will be countered by millions of antibodies capable of binding to different sites on its surface. Such a poly-clonal response is ideal for our body's defense. However, many experimental and clinical situations require access to an unlimited supply of a single antibody with a clearly defined specificity and affinity; i.e., a monoclonal antibody.

In short, monoclonal antibodies are identical antibodies produced by hybridoma cell lines derived from fusion of a B cell with a tumor cell. Kohler and Milstein first described the technique of monoclonal antibody production in 1975, a process that has been put to use in a wide range of laboratory, clinical, and industrial applications ( 1). The importance of monoclonal...

Keywords

Chronic Lymphocytic Leukemia Respiratory Syncytial Virus Follicular Lymphoma Acute Myeloid Leukemia Patient Respiratory Syncytial Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting anti-body of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  2. 2.
    Franklin EC (1975) Structure and function of immunoglobulins. Acta Endocrinol Suppl (Copenh) 194:77–95Google Scholar
  3. 3.
    Leenaars M, Hendriksen CF (2005) Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. ILAR J 46:269–279PubMedGoogle Scholar
  4. 4.
    Schroff RW, Foon KA, Beatty SM, Oldham RK, Morgan AC, Jr (1985) Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 45:879–885PubMedGoogle Scholar
  5. 5.
    Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851–6855PubMedCrossRefGoogle Scholar
  6. 6.
    Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525PubMedCrossRefGoogle Scholar
  7. 7.
    Roque-Navarro L, Mateo C, Lombardero J, Mustelier G, Fernandez A, Sosa K, Morrison SL, Perez R (2003) Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies: new evidence supporting a simple method. Hybrid Hybridomics 22:245–257PubMedCrossRefGoogle Scholar
  8. 8.
    Mateo C, Lombardero J, Moreno E, Morales A, Bombino G, Coloma J, Wims L, Morrison SL, Perez R (2000) Removal of amphipathic epitopes from genetically engineered antibodies: production of modified immunoglobulins with reduced immunogenicity. Hybridoma 19:463–471PubMedCrossRefGoogle Scholar
  9. 9.
    Huls GA, Heijnen IA, Cuomo ME, Koningsberger JC, Wiegman L, Boel E, van der Vuurst de Vries AR, Loyson SA, Helfrich W, van Berge Henegouwen GR, van Meijer M, de Kruif J, Logtenberg T (1999) A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments. Nat Biotechnol 17:276–281PubMedCrossRefGoogle Scholar
  10. 10.
    Karpas A, Dremucheva A, Czepulkowski BH (2001) A human myeloma cell line suitable for the generation of human monoclonal antibodies. Proc Natl Acad Sci USA 98:1799–1804PubMedCrossRefGoogle Scholar
  11. 11.
    Davis CG, Jia XC, Feng X, Haak-Frendscho M (2004) Production of human antibodies from transgenic mice. Methods Mol Biol 248:191–200PubMedGoogle Scholar
  12. 12.
    Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A, Tanaka S, Umehashi M, Maeda H, Nozaki C, Halk E, Lonberg N (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4:91–102PubMedCrossRefGoogle Scholar
  13. 13.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554PubMedCrossRefGoogle Scholar
  14. 14.
    Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigenbinding proteins. Science 242:423–426PubMedCrossRefGoogle Scholar
  15. 15.
    Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90:6444–6448PubMedCrossRefGoogle Scholar
  16. 16.
    Iliades P, Kortt AA, Hudson PJ (1997) Triabodies: single chain Fv fragments without a linker form trivalent trimers. FEBS Lett 409:437–441PubMedCrossRefGoogle Scholar
  17. 17.
    Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM (1996) Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061PubMedGoogle Scholar
  18. 18.
    Arndt MA, Krauss J, Kipriyanov SM, Pfreundschuh M, Little M (1999) A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplantated human Hodgkin's tumors. Blood 94:2562–2568PubMedGoogle Scholar
  19. 19.
    Polito L, Bolognesi A, Tazzari PL, Farini V, Lubelli C, Zinzani PL, Ricci F, Stirpe F (2004) The conjugate Rituximab/saporin-S6 completely inhibits clonogenic growth of CD20-expressing cells and produces a synergistic toxic effect with Fludarabine. Leukemia 18:1215–1222PubMedCrossRefGoogle Scholar
  20. 20.
    Matthey B, Borchmann P, Schnell R, Tawadros S, Lange H, Huhn M, Klimka A, Tur MK, Barth S, Engert A, Hansen HP (2004) Metalloproteinase inhibition augments antitumor efficacy of the anti-CD30 immunotoxin Ki-3(scFv)-ETA' against human lymphomas in vivo. Int J Cancer 111:568–574PubMedCrossRefGoogle Scholar
  21. 21.
    Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37 Suppl 4:S3–8CrossRefGoogle Scholar
  22. 22.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137PubMedCrossRefGoogle Scholar
  23. 23.
    Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232PubMedCrossRefGoogle Scholar
  24. 24.
    Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37 Suppl 4:S9–15CrossRefGoogle Scholar
  25. 25.
    Mendelsohn J, Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21:2787–2799PubMedCrossRefGoogle Scholar
  26. 26.
    Ennis BW, Lippman ME, Dickson RB (1991) The EGF receptor system as a target for antitumor therapy. Cancer Invest 9:553–562PubMedCrossRefGoogle Scholar
  27. 27.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedCrossRefGoogle Scholar
  28. 28.
    Frieze DA, McCune JS (2006) Current status of cetuximab for the treatment of patients with solid tumors. Ann Pharmacother 40:241–250PubMedCrossRefGoogle Scholar
  29. 29.
    Astsaturov I, Cohen RB, Harari P (2006) Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Rev Anticancer Ther 6:1179–1193PubMedCrossRefGoogle Scholar
  30. 30.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182PubMedCrossRefGoogle Scholar
  31. 31.
    Cell Markers and Cytogenetics Committees College of American Pathologists. (2002) Clinical laboratory assays for HER-2/neu amplification and overexpres-sion: quality assurance, standardization, and proficiency testing. Arch Pathol Lab Med 126:803–808Google Scholar
  32. 32.
    Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA. 89:4285–4289PubMedCrossRefGoogle Scholar
  33. 33.
    Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151:1523–1530PubMedGoogle Scholar
  34. 34.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446PubMedCrossRefGoogle Scholar
  35. 35.
    Ocana A, Rodriguez CA, Cruz JJ (2005) Integrating trastuzumab in the treatment of breast cancer. Current status and future trends. Clin Transl Oncol 7:99, 100PubMedCrossRefGoogle Scholar
  36. 36.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  37. 37.
    Ellis LM (2005) Bevacizumab. Nat Rev Drug Discov Suppl: S8, 9Google Scholar
  38. 38.
    Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400PubMedCrossRefGoogle Scholar
  39. 39.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21:60–65PubMedCrossRefGoogle Scholar
  40. 40.
    Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113:363–372PubMedCrossRefGoogle Scholar
  41. 41.
    Brekke OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2:52–62PubMedCrossRefGoogle Scholar
  42. 42.
    McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833PubMedGoogle Scholar
  43. 43.
    Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22:7359–7368PubMedCrossRefGoogle Scholar
  44. 44.
    Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346:235–242PubMedCrossRefGoogle Scholar
  45. 45.
    Buske C, Hiddemann W (2006) Rituximab maintenance therapy in indolent NHL: a clinical review. Leuk Res 30 Suppl 1:S11–15CrossRefGoogle Scholar
  46. 46.
    Czuczman MS, Grillo-Lopez AJ, White CA, Saleh M, Gordon L, LoBuglio AF, Jonas C, Klippenstein D, Dallaire B, Varns C (1999) Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 17:268–276PubMedGoogle Scholar
  47. 47.
    Hainsworth JD, Litchy S, Barton JH, Houston GA, Hermann RC, Bradof JE, Greco FA, Minnie Pearl Cancer Research Network (2003) Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 21:1746–1751PubMedCrossRefGoogle Scholar
  48. 48.
    Friedberg JW, Neuberg D, Gribben JG, Fisher DC, Canning C, Koval M, Poor CM, Green LM, Daley J, Soiffer R, Ritz J, Freedman AS (2002) Combination immunotherapy with rituximab and interleukin 2 in patients with relapsed or refractory follicular non-Hodgkin's lymphoma. Br J Haematol 117:828–834PubMedCrossRefGoogle Scholar
  49. 49.
    Dorner T (2006) Crossroads of B cell activation in autoimmunity: rationale of targeting B cells. J Rheumatol Suppl 77:3–11PubMedGoogle Scholar
  50. 50.
    Looney RJ (2006) B cell-targeted therapy for rheumatoid arthritis: an update on the evidence. Drugs 66:625–639PubMedCrossRefGoogle Scholar
  51. 51.
    Weide R, Heymanns J, Pandorf A, Koppler H (2003) Successful long-term treatment of systemic lupus erythematosus with rituximab maintenance therapy. Lupus 12:779–782PubMedCrossRefGoogle Scholar
  52. 52.
    Hansen PB, Lauritzen AM (2005) Aplastic anemia successfully treated with rituxi-mab. Am J Hematol 80:292–294PubMedCrossRefGoogle Scholar
  53. 53.
    Noss EH, Hausner-Sypek DL, Weinblatt ME (2006) Rituximab as therapy for refractory polymyositis and dermatomyositis. J Rheumatol 33:1021–1026PubMedGoogle Scholar
  54. 54.
    Braendstrup P, Bjerrum OW, Nielsen OJ, Jensen BA, Clausen NT, Hansen PB, Andersen I, Schmidt K, Andersen TM, Peterslund NA, Birgens HS, Plesner T, Pedersen BB, Hasselbalch HC (2005) Rituximab chimeric anti-CD20 monoclonal antibody treatment for adult refractory idiopathic thrombocytopenic purpura. Am J Hematol 78:275–280PubMedCrossRefGoogle Scholar
  55. 55.
    Salisbury JR, Rapson NF, Codd JD, Rogers MV, Nethersell AB (1994) Immunohistochemical analysis of CDw52 antigen expression in non-Hodgkin's lymphomas. J Clin Pathol 47:313–317PubMedCrossRefGoogle Scholar
  56. 56.
    Keating MJ, Flinn I, Jain V, Binet JL, Hillmen P, Byrd J, Albitar M, Brettman L, Santabarbara P, Wacker B, Rai KR (2002) Therapeutic role of alemtuzumab (Campath-1 H) in patients who have failed fludarabine: results of a large international study. Blood 99:3554–3561PubMedCrossRefGoogle Scholar
  57. 57.
    Faderl S, Coutre S, Byrd JC, Dearden C, Denes A, Dyer MJ, Gregory SA, Gribben JG, Hillmen P, Keating M, Rosen S, Venugopal P, Rai K (2005) The evolving role of alemtuzumab in management of patients with CLL. Leukemia 19:2147–2152PubMedCrossRefGoogle Scholar
  58. 58.
    Osterborg A, Mellstedt H, Keating M (2002) Clinical effects of alemtuzumab (Campath-1H) in B-cell chronic lymphocytic leukemia. Med Oncol 19 Suppl: S21–6PubMedCrossRefGoogle Scholar
  59. 59.
    Faderl S, Thomas DA, O'Brien S, Garcia-Manero G, Kantarjian HM, Giles FJ, Koller C, Ferrajoli A, Verstovsek S, Pro B, Andreeff M, Beran M, Cortes J, Wierda W, Tran N, Keating MJ (2003) Experience with alemtuzumab plus rituximab in patients with relapsed and refractory lymphoid malignancies. Blood 101:3413–3415PubMedCrossRefGoogle Scholar
  60. 60.
    Hale G, Waldmann H (1994) CAMPATH-1 monoclonal antibodies in bone marrow transplantation. J Hematother 3:15–31PubMedCrossRefGoogle Scholar
  61. 61.
    Dinndorf PA, Andrews RG, Benjamin D, Ridgway D, Wolff L, Bernstein LD (1986) Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 67:1048–1053PubMedGoogle Scholar
  62. 62.
    Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G, Pazdur R (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496PubMedGoogle Scholar
  63. 63.
    Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H, Karanes C, Theobald M, Bennett JM, Sherman ML, Berger MS, Eten CB, Loken MR, van Dongen JJ, Bernstein LD, Appelbaum FR, Mylotarg Study Group (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19:3244–3254PubMedGoogle Scholar
  64. 64.
    Leopold LH, Berger MS, Cheng SC, Cortes-Franco JE, Giles FJ, Estey EH (2003) Comparative efficacy and safety of gemtuzumab ozogamicin monotherapy and high-dose cytarabine combination therapy in patients with acute myeloid leukemia in first relapse. Clin Adv Hematol Oncol 1:220–225PubMedGoogle Scholar
  65. 65.
    Kung P, Goldstein G, Reinherz EL, Schlossman SF (1979) Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206:347–349PubMedCrossRefGoogle Scholar
  66. 66.
    [Anonymous] (1985) A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. Ortho Multicenter Transplant Study Group. N Engl J Med 313:337–342Google Scholar
  67. 67.
    Cosimi AB, Cho SI, Delmonico FL, Kaplan MM, Rohrer RJ, Jenkins RL (1987) A randomized clinical trial comparing OKT3 and steroids for treatment of hepatic allograft rejection. Transplant Proc 19:2431–2433PubMedGoogle Scholar
  68. 68.
    Kremer AB, Barnes L, Hirsch RL, Goldstein G (1987) Orthoclone OKT3 monoclonal antibody reversal of hepatic and cardiac allograft rejection unresponsive to conventional immunosuppressive treatments. Transplant Proc 19:54–57PubMedGoogle Scholar
  69. 69.
    [Anonymous] (2003) Adalimumab (humira) for rheumatoid arthritis. Med Lett Drugs Ther 45:25–27Google Scholar
  70. 70.
    Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48:35–45PubMedCrossRefGoogle Scholar
  71. 71.
    Choy G (1998) A review of respiratory syncytial virus infection in infants and children. Home Care Provid 3:306–311PubMedCrossRefGoogle Scholar
  72. 72.
    Krilov LR (2002) Palivizumab in the prevention of respiratory syncytial virus disease. Expert Opin Biol Ther 2:763–769PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhong J. Zhang
    • 1
  • Maher Albitar
    • 1
  1. 1.Department of HematopathologyNichols Institute, Quest DiagnosticsSan Juan Capistrano

Personalised recommendations