Advertisement

cDNA Microarrays

  • Phillip G. Febbo
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

1. Background and Theory of cDNA Microarrays

1.1. Overview

Clinicians and scientists are limited in their ability to understand human disease and cellular biology by the technologies available to measure the state of the organism or cell. For millennia, scientists have studied human biology and disease based on anatomical observations; for centuries, decisions have been based on microscopic observations, and over the past several decades, decisions have been based on the status of specific genes associated with disease. In the mid-1990s, cDNA microarray technology emerged that simultaneously measured the expression of thousands of genes (1, 2, 3, 4, 5) These expression micro-arrays have rapidly evolved to cover most of the 34,000 genes in the human genome (6) and now offer clinicians and scientists an unprecedented level of detail through which they can observe human disease and cellular biology.

The central position of gene expression in cellular homeostasis makes it a provocative...

Keywords

Acute Lymphoblastic Leukemia cDNA Array Acute Myeloblastic Leukemia cDNA Microarray Analysis Unsupervised Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schena M et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470PubMedGoogle Scholar
  2. 2.
    Lipshutz RJ, et al (1995) Using oligonucleotide probe arrays to access genetic diversity. Biotechniques 19(3):442–447PubMedGoogle Scholar
  3. 3.
    Chu S, et al (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389):699–705PubMedGoogle Scholar
  4. 4.
    Wodicka L, et al (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol 15(13):1359–1367Google Scholar
  5. 5.
    Lockhart DJ, et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol 14(13):1675–1680Google Scholar
  6. 6.
    Baltimore D (2001) Our genome unveiled. Nature 409:814–816PubMedGoogle Scholar
  7. 7.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedGoogle Scholar
  8. 8.
    Pollack JR, et al (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99(20):12,963–12,968Google Scholar
  9. 9.
    Varambally S, et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629PubMedGoogle Scholar
  10. 10.
    Mootha VK, et al (2003) PGC-lalpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet 34(3):267–273PubMedGoogle Scholar
  11. 11.
    Crick F (1970) Central dogma of molecular biology. Nature 227(258):561–563PubMedGoogle Scholar
  12. 12.
    Velculescu VE, et al (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251PubMedGoogle Scholar
  13. 13.
    Velculescu VE, et al (1995) Serial analysis of gene expression. Science 270(5235): 484–487PubMedGoogle Scholar
  14. 14.
    Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257(5072):967–971PubMedGoogle Scholar
  15. 15.
    Kerr MK and Churchill GA (2001) Statistical design and the analysis of gene expression microarray data. Genet Res 77(2):123–128PubMedGoogle Scholar
  16. 16.
    Churchill GA (2002) Fundamentals of experimental design for cDNA microar-rays. Nature Genet 32 (Suppl):490–495PubMedGoogle Scholar
  17. 17.
    Simon R, Radmacher MD, Dobbin K (2002) Design of studies using DNA micro-arrays. Genet Epidemiol 23(1):21–36PubMedGoogle Scholar
  18. 18.
    Mukherjee S, et al (2003) Estimating dataset size requirements for classifying DNA microarray data. J Comput Biol 10(2):119–142PubMedGoogle Scholar
  19. 19.
    Van Der Laan MJ, Bryan J (2001) Gene expression analysis with the parametric bootstrap. Biostatistics 2(4):445–61PubMedGoogle Scholar
  20. 20.
    Yang IV, et al (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biology 3:62.1–62.12Google Scholar
  21. 21.
    Ma XJ, et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100(10):5974–5979PubMedGoogle Scholar
  22. 22.
    Golub TR, et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537PubMedGoogle Scholar
  23. 23.
    Perou CM, et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedGoogle Scholar
  24. 24.
    Baugh LR, et al (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res 29(5):E29PubMedGoogle Scholar
  25. 25.
    Barrett JC, Kawasaki ES (2003) Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. Drug Discov Today 8(3):134–141PubMedGoogle Scholar
  26. 26.
    Yang YH, et al (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systemic variation. Nucelic Acids Res 30(4):e15Google Scholar
  27. 27.
    Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98(1):31–36PubMedGoogle Scholar
  28. 28.
    Quackenbush J (2002) Microarray data normalization and transformation. Nature Genet 32 (Suppl):496–501PubMedGoogle Scholar
  29. 29.
    Workman C et al (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3(9):research0048Google Scholar
  30. 30.
    Tseng GC, et al (2001) Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res 29(12):2549–2557PubMedGoogle Scholar
  31. 31.
    Hoffmann R, Seidl T, Dugas M (2002) Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biol 3(7):p. research0033Google Scholar
  32. 32.
    Hautaniemi S, et al (2003) A novel strategy for microarray quality control using Bayesian networks. Bioinformatics 19(16):2031–2038PubMedGoogle Scholar
  33. 33.
    Smyth GK, Yang YH, Speed T (2003) Statistical issues in cDNA microarray data analysis. Methods Mol Biol 224:111–136PubMedGoogle Scholar
  34. 34.
    Jenssen TK, et al (2002) Analysis of repeatability in spotted cDNA microarrays. Nucleic Acids Res 30(14):3235–3244PubMedGoogle Scholar
  35. 35.
    Gollub J, et al (2003) The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res 31(1):94–96PubMedGoogle Scholar
  36. 36.
    Eisen MB, et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14,863–14,868Google Scholar
  37. 37.
    Tamayo P, et al (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96(6):2907–2912PubMedGoogle Scholar
  38. 38.
    Zhong S, Li C, Wong WH (2003) ChipInfo: Software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res. 31(13):3483–3486PubMedGoogle Scholar
  39. 39.
    Jenssen TK, et al (2001) A literature network of human genes for high-throughput analysis of gene expression. Nature Genet. 28(1):21–28PubMedGoogle Scholar
  40. 40.
    Butte AJ, et al (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97(22):12,182–12,186Google Scholar
  41. 41.
    Nevins JR, et al (2003) Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum Mol Genet 12:(Epub 8/19/03)Google Scholar
  42. 42.
    Chuaqui RF, et al (2002) Post-analysis follow-up and validation of microarray experiments. Nature Genet 32 (Suppl):509–514PubMedGoogle Scholar
  43. 43.
    Slonim DK (2002) From patterns to pathways: gene expression data analysis comes of age. Nature Genet 32 (Suppl):502–508PubMedGoogle Scholar
  44. 44.
    Dougherty E (2001) Small sample issues for microarray-based classification. Comp Function Genom 2:28–34Google Scholar
  45. 45.
    Kerr MK, Churchill GA (2001) Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc Natl Acad Sci USA 98(16):8961–8965PubMedGoogle Scholar
  46. 46.
    Azuaje F (2003) Genomic data sampling and its effect on classification performance assessment. BMC Bioinformatics 4(1), 5PubMedGoogle Scholar
  47. 47.
    Singh D, et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203–209PubMedGoogle Scholar
  48. 48.
    Dyrskjot L, et al (2003) Identifying distinct classes of bladder carcinoma using microarrays. Nature Genet 33(1):90–96PubMedGoogle Scholar
  49. 49.
    Nutt CL, et al (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63(7): 1602–1607PubMedGoogle Scholar
  50. 50.
    Pomeroy SL, et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870):436–442PubMedGoogle Scholar
  51. 51.
    Shipp MA, et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med 8(1):68–74PubMedGoogle Scholar
  52. 52.
    Stickney HL, et al (2002) Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res 12(12):1929–1934PubMedGoogle Scholar
  53. 53.
    Brazma A, et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet 29(4):365–371PubMedGoogle Scholar
  54. 54.
    Spellman PT, et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297PubMedGoogle Scholar
  55. 55.
    Iyer VR, et al (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283(5398):83–87PubMedGoogle Scholar
  56. 56.
    Le Naour F, et al (2001) Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucle-otide microarrays and proteomics. J Biol Chem 276(21):17920–17931PubMedGoogle Scholar
  57. 57.
    Quackenbush J (2003) Genomics. Microarrays–guilt by association. Science 302(5643):240–241PubMedGoogle Scholar
  58. 58.
    Kim SK, et al (2001) A gene expression map for Caenorhabditis elegans. Science 293(5537), 2087–2092PubMedGoogle Scholar
  59. 59.
    Walhout AJ, et al (2002) Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr Biol 12(22):1952–1958PubMedGoogle Scholar
  60. 60.
    White KP, et al (1999) Microarray analysis of Drosophila development during metamorphosis. Science 286(5447):2179–2184PubMedGoogle Scholar
  61. 61.
    Jin W, et al (2001) The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet 29(4):389–395PubMedGoogle Scholar
  62. 62.
    Arbeitman MN, et al (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297(5590):2270–2275PubMedGoogle Scholar
  63. 63.
    Ton C, et al (2002) Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem Biophys Res Commun, 296(5):1134–42PubMedGoogle Scholar
  64. 64.
    Stuart JM, et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255PubMedGoogle Scholar
  65. 65.
    McCarroll SA, et al (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nature Genet 36(2):197–204PubMedGoogle Scholar
  66. 66.
    Hughes TR, et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126PubMedGoogle Scholar
  67. 67.
    Schadt EE, Monks SA, Friend SH (2003) A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem Soc Trans 31(2):437–443PubMedGoogle Scholar
  68. 68.
    Stegmaier K, et al (2004) Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genet 36(3):257–263PubMedGoogle Scholar
  69. 69.
    Yeoh EJ, et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143PubMedGoogle Scholar
  70. 70.
    Su AI, et al (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61(20):7388–7393PubMedGoogle Scholar
  71. 71.
    Ramaswamy S, et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98(26):15,149–15,154Google Scholar
  72. 72.
    Chan WC, Huang JZ (2001) Gene expression analysis in aggressive NHL. Ann Hemato. 80 (Suppl. 3):B38–B41Google Scholar
  73. 73.
    Alizadeh AA, et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511PubMedGoogle Scholar
  74. 74.
    Ono K, et al (2000) Identification by cDNA microarray of genes involved in ovarian carcinogenesis. Cancer Res 60(18):5007–5011PubMedGoogle Scholar
  75. 75.
    Sallinen SL, et al (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 60(23): 6617–6622PubMedGoogle Scholar
  76. 76.
    Lu J, et al (2001) Gene expression profile changes in initiation and progression of squamous cell carcinoma of esophagus. Int J Cancer 91(3):288–294PubMedGoogle Scholar
  77. 77.
    Mori M, et al (2002) Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 131(1 Suppl):S39–S47PubMedGoogle Scholar
  78. 78.
    Jiang Y, et al (2002) Discovery of differentially expressed genes in human breast cancer using subtracted cDNA libraries and cDNA microarrays. Oncogene 21(14):2270–2282PubMedGoogle Scholar
  79. 79.
    Rubin MA, et al (2002) Alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287(13):1662–1670PubMedGoogle Scholar
  80. 80.
    Luo J, et al (2002) Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 62(8):2220–2226PubMedGoogle Scholar
  81. 81.
    Hedenfalk I, et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344(8):539–548PubMedGoogle Scholar
  82. 82.
    Garber ME, et al (2001) Diversity of gene expression in adenocarcinoma of the lung Proc Natl Acad Sci USA 98(24):13,784–13,789Google Scholar
  83. 83.
    Bhattacharjee A, et al (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98(24):13,790–13,795Google Scholar
  84. 84.
    Armstrong SA, et al (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genet 30(1):41–47PubMedGoogle Scholar
  85. 85.
    Yussman MG, et al (2002) Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nature Med 8(7):725–730PubMedGoogle Scholar
  86. 86.
    Heller RA, et al (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci USA 94(6):2150–2155PubMedGoogle Scholar
  87. 87.
    Baelde HJ, et al (2004) Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis 43(4):636–650PubMedGoogle Scholar
  88. 88.
    Whitney LW, et al (1999) Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann Neurol 46(3):425–428PubMedGoogle Scholar
  89. 89.
    Chabas D, et al (2001) The influence of the proinflammatory cytokine, osteopon-tin, on autoimmune demyelinating disease. Science 294(5547):1731–1735PubMedGoogle Scholar
  90. 90.
    van't Veer LJ, et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536Google Scholar
  91. 91.
    West M, et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98(20):11,462–11,467Google Scholar
  92. 92.
    Huang E, et al (2003) Gene expression predictors of breast cancer outcomes. Lancet 361(9369):1590–1596PubMedGoogle Scholar
  93. 93.
    van de Vijver MJ, et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009PubMedGoogle Scholar
  94. 94.
    Henshall SM, et al (2003) Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 63(14):4196–4203PubMedGoogle Scholar
  95. 95.
    Li S, et al (2001) Comparative genome-scale analysis of gene expression profiles in T cell lymphoma cells during malignant progression using a complementary DNA microarray. Am J Pathol 158(4):1231–1237PubMedGoogle Scholar
  96. 96.
    Wright G, et al (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100(17):9991–9996PubMedGoogle Scholar
  97. 97.
    Ramaswamy S, et al (2003) A molecular signature of metastasis in primary solid tumors. Nature Genet 33(1):49–54PubMedGoogle Scholar
  98. 98.
    Blaxall BC, et al (2003) Differential myocardial gene expression in the development and rescue of murine heart failure. Physiol Genom 15(2):105–114Google Scholar
  99. 99.
    Ueno S, et al (2003) DNA microarray analysis of in vivo progression mechanism of heart failure. Biochem Biophys Res Commun 307(4):771–777PubMedGoogle Scholar
  100. 100.
    Youdim MB, et al (2002) Early and late molecular events in neurodegeneration and neuroprotection in Parkinson's disease MPTP model as assessed by cDNA microarray; the role of iron. Neurotox Res 4(7–8):679–689PubMedGoogle Scholar
  101. 101.
    Eikmans M, et al (2002) RNA expression profiling as prognostic tool in renal patients: toward nephrogenomics. Kidney Int 62(4):1125–1135PubMedGoogle Scholar
  102. 102.
    Leikauf GD, et al (2002) Acute lung injury: functional genomics and genetic susceptibility. Chest 121(3 Suppl.):70S–75SPubMedGoogle Scholar
  103. 103.
    Chang JC, et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381):362–369PubMedGoogle Scholar
  104. 104.
    Faneyte IF, et al (2003) Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br J Cancer 88(3):406–412PubMedGoogle Scholar
  105. 105.
    Armstrong SA, et al (2003) Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3(2): 173–183PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Phillip G. Febbo
    • 1
  1. 1.Duke Institute for Genome Science and Policy, Departments of Medicine and Molecular Genetics and MicrobiologyDuke UniversityDurham

Personalised recommendations