Advertisement

Transient Global Cerebral Ischemia Model in Mice

  • Kuniyasu Niizuma
  • Hidenori Endo
  • Chikako Nito
  • D. Jeannie Myer
  • Gab Seok Kim
  • Teiji Tominaga
  • Pak H. Chan
Protocol
  • 2k Downloads
Part of the Springer Protocols Handbooks book series (SPH)

The transient global ischemia model is used to analyze selective neuronal death in vulnerable regions including the CA1 subregion of the hippocampus and in certain cortical neurons. In this mouse global ischemia model, bilateral common carotid arteries are reversibly occluded, and the individual anatomical backgrounds are normalized by evaluating the patency of the posterior communicating artery. Using this evaluation, this model might be used for mouse strains with various genetic backgrounds.

Keywords

Blood flow Delayed neuronal death Global cerebral ischemia model Hippocampus Ischemic brain injury Mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982;239:57–69PubMedCrossRefGoogle Scholar
  2. 2.
    Pulsinelli WA, Waldman S, Rawlinson D, Plum F. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 1982;32:1239–1246PubMedGoogle Scholar
  3. 3.
    Smith M-L, Auer RN, Siesjö BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 1984;64:319–332CrossRefGoogle Scholar
  4. 4.
    Yang G, Kitagawa K, Matsushita K, Mabuchi T, Yagita Y, Yanagihara T, Matsumoto M. C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res 1997;752:209–218PubMedCrossRefGoogle Scholar
  5. 5.
    Fujii M, Hara H, Meng W, Vonsattel JP, Huang Z, Moskowitz MA. Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57Black/6 mice. Stroke 1997;28:1805–1810PubMedGoogle Scholar
  6. 6.
    Kitagawa K, Matsumoto M, Yang G, Mabuchi T, Yagita Y, Hori M, Yanagihara T. Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: evaluation of the patency of the posterior communicating artery. J Cereb Blood Flow Metab 1998;18:570–579PubMedCrossRefGoogle Scholar
  7. 7.
    Murakami K, Kondo T, Kawase M, Chan PH. The development of a new mouse model of global ischemia: focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res 1998;780:304–310PubMedCrossRefGoogle Scholar
  8. 8.
    Wellons JC III, Sheng H, Laskowitz DT, Mackensen GB, Pearlstein RD, Warner DS. A comparison of strain-related susceptibility in two murine recovery models of global cerebral ischemia. Brain Res 2000;868:14–21PubMedCrossRefGoogle Scholar
  9. 9.
    Olsson T, Wieloch T, Smith M-L. Brain damage in a mouse model of global cerebral ischemia. Effect of NMDA receptor blockade. Brain Res 2003;982:260–269PubMedCrossRefGoogle Scholar
  10. 10.
    Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Characterization of a recovery global cerebral ischemia model in the mouse. J Neurosci Methods 1999;88:103–109PubMedCrossRefGoogle Scholar
  11. 11.
    Panahian N, Yoshida T, Huang PL, Hedley-Whyte ET, Dalkara T, Fishman MC, Moskowitz MA. Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience 1996;72:343–354PubMedCrossRefGoogle Scholar
  12. 12.
    Yonekura I, Kawahara N, Nakatomi H, Furuya K, Kirino T. A model of global cerebral ischemia in C57 BL/6 mice. J Cereb Blood Flow Metab 2004;24:151–158PubMedCrossRefGoogle Scholar
  13. 13.
    Mizushima H, Zhou CJI, Dohi K, Horai R, Asano M, Iwakura Y, Hirabayashi T, Arata S, Nakajo S, Takaki A, Ohtaki H, Shioda S. Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1. J Comp Neurol 2002;448:203–216PubMedCrossRefGoogle Scholar
  14. 14.
    Kofler J, Hattori K, Sawada M, DeVries AC, Martin LJ, Hurn PD, Traystman RJ. Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J Neurosci Methods 2004;136:33–44PubMedCrossRefGoogle Scholar
  15. 15.
    Barone FC, Knudsen DJ, Nelson AH, Feuerstein GZ, Willette RN. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cereb Blood Flow Metab 1993;13:683–692PubMedGoogle Scholar
  16. 16.
    Minamisawa H, Smith M-L, Siesjö BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 1990;28:26–33PubMedCrossRefGoogle Scholar
  17. 17.
    Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, Scott RW, Chan PH. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 1999;30:1962–1968PubMedGoogle Scholar
  18. 18.
    Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982;11:491–498PubMedCrossRefGoogle Scholar
  19. 19.
    Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992;119:493–501PubMedCrossRefGoogle Scholar
  20. 20.
    Wijsman JH, Jonker RR, Keijzer R, Van de Velde CJH, Cornelisse CJ, Van Dierendonck JH. A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem 1993;41:7–12PubMedGoogle Scholar
  21. 21.
    Naruse I, Keino H, Kawarada Y. Antibody against single-stranded DNA detects both programmed cell death and drug-induced apoptosis. Histochemistry 1994;101:73–78PubMedCrossRefGoogle Scholar
  22. 22.
    Gown AM, Willingham MC. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem 2002;50:449–454PubMedGoogle Scholar
  23. 23.
    O'Brien MA, Moravec RA, Riss TL. Poly (ADP-ribose) polymerase cleavage monitored in situ in apoptotic cells. Biotechniques 2001;30:886–891PubMedGoogle Scholar
  24. 24.
    Sheng H, Laskowitz DT, Mackensen GB, Kudo M, Pearlstein RD, Warner DS. Apolipoprotein E deficiency worsens outcome from global cerebral ischemia in the mouse. Stroke 1999;30:1118–1124PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Kuniyasu Niizuma
    • 1
  • Hidenori Endo
    • 1
    • 2
  • Chikako Nito
    • 1
  • D. Jeannie Myer
    • 1
  • Gab Seok Kim
    • 1
  • Teiji Tominaga
    • 2
  • Pak H. Chan
    • 1
  1. 1.Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in NeurosciencesStanford University School of MedicineStanfordUSA
  2. 2.Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations