Advertisement

Solid-Phase Peptide Synthesis

  • Gregg B. Fields
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Methods for synthesizing peptides are divided conveniently into two categories solution and solid-phase (SPPS) Solution synthesis retains value in large-scale manufacturing and for specialized laboratory applications. However, the need to optimize reaction conditions, yields, and purification procedures for essentially every intermediate (each of which has unpredictable solubility and crystallization characteristics) renders solution methods time-consuming and labor-intensive Consequently, most workers now requiring peptides for then research opt for the more accessible solidphase approach In this chapter, an overview of SPPS is presented. For brevity, only commercially available reagents and derivatives utilized for synthesis will be considered here The reader 1s referred to a number of excellent, comprehensive reviews (1, 2, 3, 4, 5, 6, 7, 8, 9) for further discussion of the solid-phase technique.

Keywords

Hydrogen Fluoride Polymeric Support Hydrogen Fluoride Fmoc Group Fmoc Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Erickson, B W and Merrifield, R B (1976) Solid-phase peptide synthesis, in The Proteins, Vol II,3rd ed (Neurath, H and Hill, R L, eds), Academtc, New York, pp 255–527Google Scholar
  2. 2.
    Barany, G and Merrifield, R B (1979) Solid-phase peptide syntheses, in The Peptides, Vol 2 (Gross, E and Meienhofer, J, eds), Academic, New York, pp 1–284Google Scholar
  3. 3.
    Stewart, J M and Young, J D (1984) Solid Phase Peptide Synthesis, 2nd ed Pierce Chemical Co, Rockford, ILGoogle Scholar
  4. 4.
    Merrifield, B (1986) Solid phase syntheses Science 232, 341–347PubMedGoogle Scholar
  5. 5.
    Barany, G, Kneib-Cordomer, N, and Mullen, D G (1987) Solid-phase peptide synthesis a silver anmversary report Int J Peptlde Protern Res 30, 705–739Google Scholar
  6. 6.
    Kent, S B H (1988) Chemical synthesis of peptides and proteins Annu Rev Biochem 57, 957–989PubMedGoogle Scholar
  7. 7.
    Atherton, E and Sheppard, R C (1989) Solid Phase Peptide Synthesis A Practical Approach IRL, Oxford, UKGoogle Scholar
  8. 8.
    Fields, G B and Noble, R L (1990) Solid phase peptide synthesis utthzing 9-fluorenylmethoxycarbonyl amino acids Int J Peptzde Protein Res 35, 161–214Google Scholar
  9. 9.
    Fields, G B, Tian, Z, and Barany, G (1992) Principles and practice of solid-phase peptide synthesis, in Synthetic Peptides A User’s Guide (Grant, G A, ed), W H Freeman & Co, New York, pp 77–183Google Scholar
  10. 10.
    Merrifield, R B (1963) Solid phase peptide synthesis I synthesis of a tetrapeptide J Am Chem Soc 85, 2149–2154Google Scholar
  11. 11.
    Sarm, V K, Kent, S B H, and Menfield, R B (1980) Properties of swollen polymer networks. solvation and swelling of peptide-containing resins in solid-phase peptide synthesis J Am Chem Soc 102, 5463–5470Google Scholar
  12. 12.
    Live, D and Kent, S B H (1982) Fundamental aspects of the chemical applications of cross-linked polymers, in Elastomers and Rubber Elasticity (Mark, J E, ed), American Chemical Society, Washington, DC, pp 501–515Google Scholar
  13. 13.
    Arshady, R, Atherton, E, Clive, D L J, and Sheppard, R C (1981) Peptide synthesis, part 1 preparation and use of polar supports based on poly(dimethylacrylamide) J Chem Soc Perlan Trans I, 529–537Google Scholar
  14. 14.
    Hellermann, H, Lucas, H-W, Maul, J, Pillat, V N R, and Mutter, M (1983) Poly(ethylene glycol)s grafted onto crosslmked polystyrenes, 2 Multidetachably anchored polymer systems for the synthesis of solubilized peptides Makromol Chem 184, 2603–2617Google Scholar
  15. 15.
    Zalipsky, S, Albericio, F, and Barany, G (1985) Preparation and use of an ammoethyl polyethylene glycol-crosslmked polystyrene graft resin support for solid-phase peptide syntheses, in Peptides Structure and Function (Deber, C M, Hruby, V J, and Kopple, K D, eds), Pierce Chemical Co, Rockford, IL, pp 257–260Google Scholar
  16. 16.
    Bayer, E and Rapp, W (1986) New polymer supports for solid-hqmd-phase peptide synthesis, in Chemistry of Peptides and Proteins, Vol 3 (Voelter, W, Bayer, E, Ovchinnikov, Y A, and Ivanov, V T, eds), de Gruyter, Berlin, pp 3–8Google Scholar
  17. 17.
    Bayer, E, Albert, K, Willisch, H, Rapp, W, and Hemmasi, B (1990) 13C NMR relaxation times of a tripeptide methyl ester and its polymer-bound analogues Macromolecules 23, 1937–1940Google Scholar
  18. 18.
    Zalipsky, S, Chang, J L, Albericio, F, and Barany, G (1994) Preparation and applications of polyethylene glycol-polystyrene graft resin supports for solid-phase peptide synthesis Reactive Polymers 22, 243–258Google Scholar
  19. 19.
    Kent, S B H and Parker, K F (1988) The chemical synthesis of therapeutic peptides and proteins, in In Banbury Report 29 Therapeutic Peptides and Proterns Assessing the New Technologies (Marshak, D R and Lm, D T, eds), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 3–16Google Scholar
  20. 20.
    Wallace, C J A, Mascagm, P, Chatt, B T, Collawn, J F, Paterson, Y, Proudfoot, A E I, and Kent, S B H. (1989) Substitutions engineered by chemical synthesis at three conserved sues in mitochondrial cytochrome c J Bzol Chem 264, 15,199–15,209Google Scholar
  21. 21.
    Suzuki, K, Nitta, K, and Endo, N (1975) Suppression of diketopiperazine formation in solid phase peptide synthesis Chem Pharm Bull 23, 222–224Google Scholar
  22. 22.
    Schnolzer, M, Alewood, P, Jones, A, Alewood, D, and Kent, S B H (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis Rapid, high yield assembly of difficult sequences Int J Peptlde Protein Res 40, 180–193Google Scholar
  23. 23.
    Carpmo, L A and Han, G Y (1972) The 9-fluorenylmethoxycarbonyl amino-protecting group J Org Chem 37, 3404–3409Google Scholar
  24. 24.
    Carpino, L A (1987) The 9-fluorenylmethyloxycarbonyl family of base-sensitive ammoprotecting groups Act Chem Res 20, 401–407Google Scholar
  25. 25.
    O’Ferrall, R A M and Slae, S (1970) β-ehmmatlonof 9-fluorenylmethanol in aqueous solution an E1cB mechanism J Chem Sot (B), 260–268Google Scholar
  26. 26.
    O’Ferrall, R A M (1970) β-elimination of 9-fluorenylmethanol in solutions of methanol and t-butyl alcohol J Chem Sot (B), 268–274Google Scholar
  27. 27.
    O’Ferrall, R A M (1970) Relationships between E2 and E1cB mechanisms of β-elimination J Chem Sot (B), 274–277Google Scholar
  28. 28.
    Fields, G B (1994) Methods for removing the Fmoc group, in Methods in MoEecular Biology, Vol 3.5 Peptlde Syntheses Protocols (Pennington, M W and Dunn, B M, eds), Humana, Totowa, NJ, pp 17–27Google Scholar
  29. 29.
    Wade, J D, Bedford, J, Sheppard, R C, and Tregear, G W (1991) DBU as an Nα-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solidphase peptide synthesis Peptlde Res 4, 194–199Google Scholar
  30. 30.
    Fields, C G, Mickelson, D J, Drake, S L, McCarthy, J B, and Fields, G B (1993) Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical “mini-collagen ” J Bzol. Chem 268, 14,153–14,160Google Scholar
  31. 31.
    Okada, Y and Iguchi, S (1988) Ammo acid and peptides, part 19 synthesis of β-l-and β-2-adamantyl aspartates and their evaluation for peptide synthesis J Chem Sac Perkin Trans I, 2129–2136Google Scholar
  32. 32.
    Tam, J P, Riemen, M W, and Merrifield, R B (1988) Mechanisms of aspartimide formation The effects of protecting groups, acid, base, temperature and time Peptide Res 1, 6–18Google Scholar
  33. 33.
    Erickson, B W and Merrifield, R B (1973) Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis rearrangement of O-benzyltyrosine to 3-benzyltyrosme J Am Chem Soc 95, 3750–3756PubMedGoogle Scholar
  34. 34.
    Yamashiro, D and Li, C H (1973) Protection of tyrosine in solid-phase peptide synthesis J Org Chem 38, 591,592PubMedGoogle Scholar
  35. 35.
    Fujino, M, Wakimasu, M, and Kitada, C (1981) Further studies on the use of multisubstituted benzenesulfonyl groups for protection of the guanidino function of arginine Chem Pharm Bull 29, 2825–2831Google Scholar
  36. 36.
    Green, J, Ogunjobi, O M, Ramage, R, Stewart, A S J, McCurdy, S, and Noble, R (1988) Application of the NG-(2,2,5,7, 8-pentamethylchroman-6-sulphonyl) derivative of Fmoc-arginine to peptide synthesis Tetrahedron Lett 29, 4341–4344Google Scholar
  37. 37.
    Carpino, L A, Shroff, H, Triolo, S A, Mansour, E.-S M E, Wenschuh, H, and Albertcio, F (1993) The 2,2,4,6,7-pentamethyldthydrobenzofuran-5-sulfonyl group (Pbf) as arginine side chain protectant. Tetrahedron Lett 34, 7829–7832Google Scholar
  38. 38.
    Jones, J H, Ramage, W I, and Witty, M J (1980) Mechanism of racemization of histidine derivatives in peptide synthesis Int J Peptlde Protein Res 15, 301–303Google Scholar
  39. 39.
    Riniker, B and Sieber, P (1988) Problems and progress in the synthesis of histidinecontaining peptides, in Peptides Chemrstry, Biology, Interactions with Proteins (Penke, B and Torok, A, eds), de Gruyter, Berlin, pp 65–74Google Scholar
  40. 40.
    Ishiguro, T and Eguchi, C (1989) Unexpected chain-terminating side reaction caused by histidine and acetic anhydride in solid-phase peptide synthesis Chem Pharm Bull 37, 506–508PubMedGoogle Scholar
  41. 41.
    Kusunoki, M, Nakagawa, S, Seo, K, Hamana, T, and Fukuda, T (1990) A side reaction in solid phase synthesis Insertion of glycme residues into peptide chains via N um → N α transfer Int J Peptide Protein Res 36, 381–386Google Scholar
  42. 42.
    Sieber, P and Riniker, B (1987) Protection of histidine in peptide synthesis A reassessment of the trityl group Tetrahedron Lett 28, 6031–6034Google Scholar
  43. 43.
    Forest, M and Fournier, A (1990) BOP reagent for the coupling of pGlu and Boc-His(Tos) in solid phase peptide synthesis Int J Peptlde Protem Res 35, 89–94Google Scholar
  44. 44.
    Mojsov, S, Mitchell, A R, and Merrifield, R B (1980) A quantitative evaluation of methods for coupling asparagine J Org Chem 45, 555–560Google Scholar
  45. 45.
    Gausepohl, H, Kraft, M, and Frank, R W (1989) Asparagine coupling in Fmoc solid phase peptide synthesis Int J Peptlde Protein Res 34, 287–294Google Scholar
  46. 46.
    Sieber, P and Riniker, B (1990) Side-cham protection of asparagme and glutamine by trityl application to solid-phase peptide synthesis, in Innovation and Perspectives in Solid Phase Synthesis (Epton, R, ed), Solid Phase Conference Coordination, Ltd, Birmingham, UK, pp 577–583Google Scholar
  47. 47.
    Fields, G B, Carr, S A, Marshak, D R, Smith, A J, Stults, J T, Williams, L C, Williams, K R, and Young, J D (1993) Evaluation of peptide synthesis as practiced in 53 different laboratories, in Techniques In Protein Chemistry IV (Angeletti, R H, ed), Academic, San Diego, CA, pp 229–238Google Scholar
  48. 48.
    Franzén, H, Grehn, L, and Ragnarsson, U (1984) Synthesis, properties, and use of N in-Boc-tryptophan derivatives J Chem Soc Chem Commun 1699,1700Google Scholar
  49. 49.
    White, P (1992) Fmoc-Trp(Boc)-OH A new derivative for the synthesis of peptides contaming tryptophan, in Peptides Chemistry and Biology (Smith, J A and Rivier, J E, eds), ESCOM, Leiden, The Netherlands, pp 537–538Google Scholar
  50. 50.
    Photaki, I, Taylor-Papadimitriou, J, Sakarellos, C, Mazarakis, P, and Zervas, L (1970) On cysteine and cystine peptides, part V S-trityl-and S-diphenylmethyl-cysteine and-cysteine peptides J Chem Sot (C), 2683–2687Google Scholar
  51. 51.
    Munson, M C, Garcia-Echeverria, C, Albericio, F, and Barany, G (1992) S-2,4,6-Trimethoxybenzyl (Tmob) a novel cysteine protecting group for the N α-9-fluorenylmethoxycarbonyl (Fmoc) strategy of peptide synthesis J Org Chem 57, 3013–3018Google Scholar
  52. 52.
    Nlshio, H, Kimura, T, and Sakakibara, S (1994) Side reaction in peptide syntheses modification of tryptophan during treatment with mercury(II) acetate/2-mercaptoethanol in aqueous acetic acid Tetrahedron Lett 35, 1239–1242Google Scholar
  53. 53.
    Kenner, G W, Galpin, I J, and Ramage, R (1979) Synthetic studies directed towards the synthesis of a lysozyme analog, in Peptides Structure and Biological Function (Gross, E and Meienhofer, J, eds), Pierce Chemical Co, Rockford, IL, pp 431–438Google Scholar
  54. 54.
    Albericio, F, Hammer, R P, García-Echeverría, C, Molins, M A, Chang, J L, Munson, M C, Pons, M, Giralt, E, and Barany, G (1991) Cyclization of disulfide-containing peptides in solid-phase synthesis Int J Peptide Protein Res 37, 402–413Google Scholar
  55. 55.
    Edwards, W B, Fields, C G, Anderson, C J, Pajeau, T S, Welch, M J, and Fields, G B (1994) Generally applicable, convement solid-phase synthesis and receptor affinities of octreotide analogs J Med Chem 37, 3749–3757PubMedGoogle Scholar
  56. 56.
    Rich, D H and Singh, J (1979) The carbodiimide method, in The Peptides, Vol 1 (Gross, E and Melenhofer, J, eds), Academic, New York, pp 241–314Google Scholar
  57. 57.
    Merrifield, R B, Singer, J, and Chait, B T (1988) Mass spectrometric evaluation of synthetic peptides for deletions and insertions Anal Biochem 174, 399–414PubMedGoogle Scholar
  58. 58.
    Konig, W and Geiger, R (1970) Eine neue methode zur synthese von peptiden Aktivierung der carboxylgruppe mit dicyclohexylcarbodiimid unter zusatz von 1-hydroxybenzotriazolen Chem Ber 103, 788–798PubMedGoogle Scholar
  59. 59.
    Konig, W and Geiger, R (1973) N-hydroxyverbmdungen als katalysatoren fur die aminolyse aktivierter ester Chem Ber 106, 3626–3635Google Scholar
  60. 60.
    Abdelmoty, I, Alberiao, F, Carpino, L A, Foxman, B M, and Kates, S A (1994) Structural studies of reagents for peptide bond formation crystal and molecular structures of HBTU and HATU Lett Peptide Sci 1, 57–67Google Scholar
  61. 61.
    Dourtoglou, V, Gross, B, Lambropoulou, V, and Zioudrou, C (1984) O-benzotnazolyl-N,N,N’,N’-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest Synthesis 572–574Google Scholar
  62. 62.
    Fourmer, A, Wang, C-T, and Felix, A M (1988) Applications of BOP reagent in solid phase peptide synthesis Advantages of BOP reagent for difficult couplings exemplified by a synthesis of [Ala15]-GRF(l–29)-NH2 Int J Peptide Protein Res 31, 86–97Google Scholar
  63. 63.
    Ambrosius, D, Casaretto, M, Gerardy-Schahn, R, Saunders, D, Brandenburg, D, and Zahn, H (1989) Peptide analogues of the anaphylatoxm C3a, synthesis and properties Biol Chem Hoppe-Seyler 370, 217–227PubMedGoogle Scholar
  64. 64.
    Gausepohl, H, Kraft, M, and Frank, R (1989) In situ activation of Fmoc-amino acids by BOP in solid phase peptide synthesis, in Peptides 1988 (Jung, G and Bayer, E, eds), de Gruyter, Berlin, pp 241–243Google Scholar
  65. 65.
    Seyer, R, Aumelas, A, Caraty, A, Rlvaille, P, and Castro, B (1990) Repetitive BOP coupling (REBOP) in solid phase peptide synthesis Luhberm synthesis as model Int J Peptide Protein Res 35, 465–472Google Scholar
  66. 66.
    Fields, C G, Lloyd, D H, Macdonald, R L, Otteson, K M, and Noble, R L (1991) HBTU activation for automated Fmoc solid-phase peptide synthesis Peptide Res 4, 95–101Google Scholar
  67. 67.
    Knorr, R, Trzeciak, A, Bannwarth, W, and Gillessen, D (1991) 1,1,3,3-Tetramethyluronium compounds as coupling reagents in peptide and protein chemistry, in Peptides 1990 (Giralt, E and Andreu, D, eds), Escom, Leiden, The Netherlands, pp 62–64Google Scholar
  68. 68.
    Carpino, L A, El-Faham, A, Minor, C A, and Albericio, F (1994) Advantageous applications of azabenzotriazole (triazolopyndine)-based coupling reagents to solid-phase peptide synthesis J Chem Soc Chem Commun 201–203Google Scholar
  69. 69.
    Hudson, D (1988) Methodological imphcations of simultaneous solid-phase peptide synthesis 1 Comparison of different coupling procedures J Org Chem 53, 617–624Google Scholar
  70. 70.
    Kisfaludy, L, Low, M, Nyekl, O, Szirtes, T, and Schon, I (1973) Die verwendung von pentafluorophenylestern ber peptid-synthesen Justus Liebigs Ann Chem 1421–1429Google Scholar
  71. 71.
    Penke, B, Balätspiri, L, Pallai, P, and Koväcs, K (1974) Applicatlon of pentafluorophenyl esters of Boc-amino acids in solid phase peptide synthesis Acta Phys Chem 20, 471–476Google Scholar
  72. 72.
    Kisfaludy, L and Schon, I (1983) Preparation and applications of pentafluorophenyl esters of 9-fluorenylmethyloxycarbonyl amino acids for peptide synthesis Synthesis 325–327Google Scholar
  73. 73.
    Green, M and Berman, J. (1990) Preparation of pentafluorophenyl esters of Fmoc protected amino acids with pentafluorophenyl trifluoroacetate Tetrahedron Lett 31, 5851,5852Google Scholar
  74. 74.
    Atherton, E, Cameron, L R, and Sheppard, R C (1988) Peptide synthesis, part 10 use of penlafluorophenyl esters of fluorenylmethoxycarbonylamino acids in solid phase peptide synthesis Tetrahedron 44, 843–857Google Scholar
  75. 75.
    Hudson, D (1990) Methodological implications of simultaneous solid-phase peptide synthesis A compartson of active esters Peptide Res 3, 51–55Google Scholar
  76. 76.
    Harrison, J L, Petrie, G M, Noble, R L, Beilan, H S, McCurdy, S N, and Culwell, A R (1989) Fmoc chemistry synthesis, kinetics, cleavage, and deprotection of argininecontaining peptides, in Techniques in Protein Chemistry (Hugh, T E, ed), Academic, San Diego, CA, pp 506–516Google Scholar
  77. 77.
    Fields, C G, Fields, G B, Noble, R L, and Cross, T A (1989) Solid phase peptide synthesis of [15N]-gramicidins A, B, and C and high performance liquid chromatographic purification Int J Peptide Protein Res 33, 298–303Google Scholar
  78. 78.
    Gelser, T, Beilan, H, Bergot, B J, and Otteson, K M (1988) Automation of solid-phase peptide synthesis, in Macromolecular Sequencing and Synthesis Selected Methods and Applications (Schlesinger, D H, ed), Liss, New York, pp 199–218Google Scholar
  79. 79.
    Konig, W and Geiger, R (1970) Racemisierung bei peptidsynthesen Chem Ber 103, 2024–2033PubMedGoogle Scholar
  80. 80.
    Carpino, L A, Sadat-Aalaee, D, Chao, H G, and DeSelms, R H (1990) ((9-Fluorenylmethyl)oxy)carbonyl (Fmoc) amino acid fluorides convenient new peptide coupling reagents applicable to the Fmoc/tert-butyl strategy for solution and solid-phase syntheses J Am Chem Soc 112, 9651–9652Google Scholar
  81. 81.
    Carpino, L A and Mansour, E-S M E (1992) Protected β-and γ-aspartic and-glutamic acid fluorides J Org Chem 57, 6371–6373Google Scholar
  82. 82.
    Wenschuh, H, Beyermann, M, Krause, E, Brudel, M, Winter, R, Schumann, M, Carpmo, L A, and Bienert, M (1994) Fmoc amino acid fluorides convenient reagents for the solid-phase assembly of peptides incorporating sterically hindered residues J Org Chem 59, 3275–3280Google Scholar
  83. 83.
    Wenschuh, H, Beyermann, M, Haber, H, Seydel, J K, Krause, E, Blenert, M, Carpmo, L A, El-Faham, A, and Albericio, F (1995) Stepwise automated solid phase synthesis of naturally occurring peptaibols using Fmoc amino acid fluorides J Org Chem 60, 405–410Google Scholar
  84. 84.
    Tam, J P and Merrifield, R B (1987) Strong acid deprotection of synthetic peptides mechanisms and methods, in The Peptides, Vol 9 (Udenfriend, S and Meienhofer, J,eds), Academic, New York, pp 185–248Google Scholar
  85. 85.
    Yajima, H, Fujii, N, Funakoshi, S, Watanabe, T, Murayama, E, and Otaka, A (1988) New strategy for the chemical synthesis of proteins Tetrahedron 44, 805–819Google Scholar
  86. 86.
    Nomizu, M, Inagaki, Y, Yamashita, T, Ohkubo, A, Otaka, A, Fujii, N, Roller, P P, and Yajima, H (1991) Two-step hard acid deprotection/cleavage procedure for solid phase peptide synthesis Int J Peptide Protean Res 37, 145–152Google Scholar
  87. 87.
    Akaji, K, Fujii, N, Tokunaga, F, Miyata, T, Iwanaga, S, and Yajima, H (1989) Studies on peptides CLXVIII Syntheses of three peptides Isolated from horseshoe crab hemocytes, tachyplesin I, tachyplesin II, and polyphemusin I Chem Pharm Bull 37, 2661–2664Google Scholar
  88. 88.
    Jaeger, E, Thamm, P, Knof, S, Wunsch, E, Low, M, and Klsfaludy, L (1978) Nebenreaktionen bei peptidsynthesen III synthese und charakterisierung von N in-tertbutylierten tryptophan-denvaten Hoppe-Seyler’s Z Physzol Chem 359, 1617–1628Google Scholar
  89. 89.
    Jaeger, E, Thamm, P, Knof, S, and Wunsch, E (1978) Nebenreaktionen ber peptidsynthesen IV Charakterisierung von C- und C,N-tert-butylierten tryptophan-derivaten Hoppe-Seyler’s Z Physzol Chem 359, 1629–1636Google Scholar
  90. 90.
    Low, M, Klsfaludy, L, Jaeger, E, Thamm, P, Knof, S, and Wunsch, E (1978) Direkte tert-butylierung des tryptophans Herstellung von 2,5,7-tri-tert-butyltryptophan Hoppe-Seyler’s Z Physiol Chem 359, 1637–1642PubMedGoogle Scholar
  91. 91.
    Low, M, Klsfaludy, L, and Sohär, P (1978) tert-Butylierung des tryptophan-indolringes wahrend der abspaltung der tert-butyloxycarbonyl-grnppe ber peptidsynthesen Hoppe-Seyler’s Z Physiol Chem 359, 1643–1651PubMedGoogle Scholar
  92. 92.
    Masui, Y, Chino, N, and Sakakibara, S (1980) The modification of tryptophyl residues during the acidolytic cleavage of Boc-groups I studies with Boc-tryptophan Bull Chem Sot Jpn 53, 464–468Google Scholar
  93. 93.
    Sieber, P (1987) Modification of tryptophan residues during acidolysis of 4-methoxy-2,3,6-trimethylbenzenesulfonyl groups effects of scavengers Tetrahedron Lett 28, 1637–1640Google Scholar
  94. 94.
    Rinilker, B and Hartmann, A (1990) Deprotection of peptides containing Arg(Pmc) and tryptophan or tyrosine Elucidation of by-products, in Peptides Chemistry, Structure and Biology (Rivier, J E and Marshall, G R, eds), Escom, Leiden, The Netherlands, pp 950–952Google Scholar
  95. 95.
    King, D S, Fields, C G, and Fields, G B (1990) A cleavage method for minimizing side reactions following Fmoc solid phase peptlde synthesis Int J Peptide Protein Res 36, 255–266Google Scholar
  96. 96.
    Fields, C G and Fields, G B (1993) Minimization of tryptophan alkylation following 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis Tetrahedron Lett 34, 6661–6664Google Scholar
  97. 97.
    Riniker, B and Kamber, B (1989) Byproducts of Trp-peptides synthesized on a p-benzyloxybenzyl alcohol polystyrene resin, in Peptides 1988 (Jung, G and Bayer, E, eds), de Gruyter, Berlin, pp 115–117Google Scholar
  98. 98.
    Albericio, F, Kneib-Cordonier, N, Biancalana, S, Gera, L, Masada, R I, Hudson, D, and Barany, G (1990) Preparation and application of the 5-(4-(9-fluorenylmethyloxycarbonyl)aminomethyl-3,5-dimethoxyphenoxy)valeric acid (PAL) handle for the solid-phase synthesis of C-terminal peptlde amides under mild condltlons J Org Chem 55, 3730–3743Google Scholar
  99. 99.
    Gesellchen, P D, Rothenberger, R B, Dorman, D E, Paschal, J W, Elzey, T K, and Campbell, C S (1990) A new side reaction m solid-phase peptide synthesis solid support-dependent alkylation of tryptophan, in Peptides Chemistry, Structure and Biology (Rivier, J E and Marshall, G R, eds), Escom, Leiden, The Netherlands, pp 957–959Google Scholar
  100. 100.
    Fields, C G, VanDrisse, V L, and Fields, G B (1993) Edman degradation sequence analysis of resin-bound peptides synthesized by 9-fluorenylmethoxycarbonyl chemistry Peptide Res 6, 39–46Google Scholar
  101. 101.
    Stierandovä, A, Sepetov, N F, Nikiforovich, G V, and Lebl, M (1994) Sequencedependent modification of Trp by the Pmc protecting group of Arg during TFA deprotection Int J Peptide Protein Res 43, 31–38Google Scholar
  102. 102.
    Jaeger, E, Remmer, H A, Jung, G, Metzger, J, Oberthur, W, Rucknagel, K P, Schafer, W, Sonnenbichler, J, and Zetl, I (1993) Nebenreaktionen bei peptidsynthesen V O-sulfonierung von serin und threonin wahrend der abspaltung der Pmcund Mtrschutzgruppen von argininresten bei Fmoc-festphasen-synthesen Biol Chem Hoppe-Seyler 374, 349–362PubMedGoogle Scholar
  103. 103.
    Solé N A and Barany, G (1992) Optimization of solid-phase synthesis of [Ala8]-dynorphm A J Org Chem 57, 5399–5403Google Scholar
  104. 104.
    Choi, H and Aldrich, J V (1993) Comparison of methods for the Fmoc solid-phase synthesis and cleavage of a pepttde containing both tryptophan and arginine Int J Peptide Protein Res 42, 58–63Google Scholar
  105. 105.
    Gisin, B F and Merrifield, R B (1972) Carboxyl-catalyzed intramolecular aminolysis a side reaction in solid-phase peptide synthesis J Am Chem Soc 94, 3102–3106PubMedGoogle Scholar
  106. 106.
    Pedroso, E, Grandas, A, de las Heras, X, Eritja, R, and Giralt, E (1986) Diketopiperazine formation in solid phase peptide synthesis using p-alkoxybenzyl ester resins and Frnoc-amino acids Tetrahedron Lett 27, 743–746Google Scholar
  107. 107.
    Albencio, F and Barany, G (1985) Improved approach for anchoring Nα-9-fluorenylmethyloxycarbonylamino acids as p-alkoxybenzyl esters in solid-phase peptide synthesis Int J Pepttde Protew Res 26, 92–97Google Scholar
  108. 108.
    Gain, M, Lloyd-Williams, P, Albericio, F, and Giralt, E (1990) Use of BOP reagent for the suppression of diketopiperazine formation in Boc/Bzl solid-phase peptide synthesis Tetrahedron Lett 31, 7363–7366Google Scholar
  109. 109.
    Ueki, M and Amemiya, M (1987) Removal of 9-fluorenylmethyloxycarbonyl (Fmoc) group with tetrabutylammonium fluoride Tetrahedron Lett 28, 6617–6620Google Scholar
  110. 110.
    Barlos, K, Gatos, D, Hondrelis, J, Matsoukas, J, Moore, G J, Schafer, W, and Sotiriou, P (1989) Darstellung neuer saureempfindlicker harze vom sek-alkohol-typ und ihre anwendung zur synthese von peptiden Liebigs Ann Chem, 951–955Google Scholar
  111. 111.
    Barlos, K, Gatos, D, Kallitsis, J, Papaphotiu, G, Sotiriu, P, Wenqing, Y, and Schafer, W (1989) Darstellung geschutzter peptid-fragmente unter emsatz substituierter triphenylmethyl-harze Tetrahedron Lett 30, 3943–3946Google Scholar
  112. 112.
    Bodanszky, M and Kwei, J Z (1978) Side reactlons in peptide synthesis VII sequence dependence in the formation of aminosuccinyl derivatives from β-benzyl-aspartyl peptides Int J Peptide Protean Res 12, 69–74Google Scholar
  113. 113.
    Bodanszky, M, Tolle, J C, Deshmane, S S, and Bodanszky, A (1978) Side reactions in peptide synthesis VI a reexamination of the benzyl group in the protection of the side chains of tyrosine and aspartic acid Int J Peptide Protein Res 12, 57–68Google Scholar
  114. 114.
    Nlcoläs, E, Pedroso, E, and Giralt, E (1989) Formation of aspartlmide peptides in Asp-Gly sequences Tetrahedron Lett 30, 497–500Google Scholar
  115. 115.
    Kenner, G W and Seely, J H (1972) Phenyl esters for C-termmal protection in peptide synthesis J Am Chem Soc 94, 3259–3260PubMedGoogle Scholar
  116. 116.
    Schon, I, Colombo, R, and Csehi, A (1983) Effect of piperidine on benzylaspartyl peptides in solution and in the solid phase J Chem Soc Chem Commun, 505–507Google Scholar
  117. 117.
    Yang, Y, Sweeney, W V, Schelder, K, Thornqvist, S, Chait, B T, and Tam, J P (1994) Aspartimide formation in base-driven 9-fluorenylmethoxycarbonyl chemistry Tetrahedron Lett 35, 9689–9692Google Scholar
  118. 118.
    Lauer, J L, Fields, C G, and Fields, G B (1995) Sequence dependence of aspartimide formation during 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis Lett Peptide Sci 1, 197–205Google Scholar
  119. 119.
    Dolling, R, Beyermann, M, Haenel, J, Kernchen, F, Krause, E., Franke, P, Brudel, M, and Blenert, M (1994) Pipendine-mediated side product formation for Asp(OBut)-containing peptides J Chem Soc Chem Commun 853,854Google Scholar
  120. 120.
    Quibell, M, Owen, D, Packman, L C, and Johnson, T (1994) Suppression of piperidine-mediated side product formation for Asp(OBut)-containing peptides by the use of N- (2-hydroxy-4-methoxybenzyl) (Hmb) backbone amide protection J Chem Soc Chem Commun 2343,2344Google Scholar
  121. 121.
    Atherton, E, Hardy, P M, Harris, D E, and Matthews, B H (1991) Racemization of C-termmal cysteme during peptide assembly, in Peptides 1990 (Giralt, E and Andreu, D, eds), Escom, Leaden, The Netherlands, pp 243,244Google Scholar
  122. 122.
    Fujiwara, Y, Akaji, K, and Kiso, Y(1994) Racemization-free syntheses of C-terminal cysteine-peptide using 2-chlorotrityl resin Chem Pharm Bull 42, 724–726PubMedGoogle Scholar
  123. 123.
    Fields, C G and Fields, G B (1994) Solvents for solid-phase peptide synthesis, in Methods in Molecular Biology, vol 35 Peptide Syntheses Protocols (Pennington, M W and Dunn, B M, eds), Humana, Totowa, NJ, pp 29–40Google Scholar
  124. 124.
    Sarin, V K, Kent, S B H, Mitchell, A. R, and Menfield, R B (1984) A general approach to the quantitation of synthetic efficiency in solid-phase peptide synthesis as a function of chain length J Am Chem Soc 106, 7845–7850Google Scholar
  125. 125.
    Pickup, S, Blum, F D, and Ford, W T (1990) Self-diffusion coefficients of Boc-amino acid anhydrides under conditions of solid phase peptide synthesis J Polym Sci A Polym Chem 28, 931–934Google Scholar
  126. 126.
    Live, D H and Kent, S B H (1983) Correlation of coupling rates with physicochemical properties of resin-bound peptides in solid phase synthesis, in Peptides Structure and Function (Hruby, V J and Rich, D H, eds), Pierce Chemical Co, Rockford, IL, pp 65–68Google Scholar
  127. 127.
    Mutter, M, Altmann, K H, Bellof, D, Florsheimer, A, Herbert, J, Huber, M, Klein, B, Strauch, L, Vorherr, T, and Gremlich, H U (1985) The impact of secondary structure formation in peptide synthesis, in Peptides Structure and Function (Deber, C M, Hruby, V J, and Kopple, K D, eds), Pierce Chemxal Co, Rockford, IL, pp 397–405Google Scholar
  128. 128.
    Ludwick, A G, Jelinski, L W, Live, D., Kintanar, A, and Dumais, J J (1986) Association of peptide chains during Merrifield solid-phase peptide synthesis a deuterium NMR study J Am Chem Soc 108, 6493–6496Google Scholar
  129. 129.
    Narita, M and Kojima, Y (1989) The β-sheet structure-stabilizing potential of twenty kinds of amino acid residues in protected peptides Bull Chem Soc Jpn 62, 3572–3576Google Scholar
  130. 130.
    Yamashiro, D, Blake, J, and Li, C H (1976) The use of trifluoroethanol for improved coupling in solid-phase peptide synthesis Tetrahedron Lett, 1469–1472Google Scholar
  131. 131.
    Nanta, M, Umeyama, H, and Yoshida, T (1989) The easy dlsruptlon of the β-sheet structure of resin-bound human proinsulin C-peptide fragments by strong electron-donor solvents Bull Chem Sot Jpn 62, 3582–3586Google Scholar
  132. 132.
    Fields, G B, Otteson, K M, Fields, C G, and Noble, R L (1990) The versatility of solid phase peptide synthesis, in Innovation and Perspectives in Solid Phase Synthesis (Epton, R, ed), Solid Phase Conference Coordination, Ltd, Birmingham, UK, pp 241–260Google Scholar
  133. 133.
    Fields, G B and Fields, C G (1991) Solvation effects in solid-phase peptide synthesis J Am Chem Soc 113, 4202–4207Google Scholar
  134. 134.
    Atherton E, Woolley, V, and Sheppard, R C (1980) Internal association in solid phase peptide synthesis. synthesis of cytochrome C residues 66–l04 on polyamide supports J Chem Soc, Chem Commun 970,971Google Scholar
  135. 135.
    Atherton, E and Sheppard, R C (1985) Detection of problem sequences in solid phase synthesis, in Peptides Structure and Function (Deber, C M, Hruby, V J, and Kopple, K D, eds), Pierce Chemical Co, Rockford, IL, pp 415–418Google Scholar
  136. 136.
    Bedford, J, Hyde, C, Johnson, T, Jun, W, Owen, D, Quibell, M, and Sheppard, R C (1992) Ammo acid structure and “dlffcult sequences” in solid phase peptide synthesis Int J Peptide Protein Res 40, 300–307Google Scholar
  137. 137.
    Johnson, T, Quibell, M, Owen, D, and Sheppard, R C (1993) A reversible protecting group for the amide bond in peptides use in the synthesis of ‘difficult sequences’ J Chem Soc Chem Commun 369–372Google Scholar
  138. 138.
    Hyde, C, Johnson, T, Owen, D, Quibell, M, and Sheppard, R C (1994) Some ‘difficult sequences’ made easy a study of mtercham association in solid-phase peptide synthesis Int J Peptide Protein Res 43, 431–440Google Scholar

Copyright information

© Humana Press Inc , Totowa, NJ. 1998

Authors and Affiliations

  • Gregg B. Fields
    • 1
  1. 1.Department of Laboratory Medzczne and PathologyUnzverszty of MznnesotaMznneapolzs

Personalised recommendations