Advertisement

Protein Fragmentation

  • Linda A. Fothergill-Gilmore
Protocol
  • 1k Downloads
Part of the Biological Methods book series (BM)

Abstract

Proteins are large molecules. A great many studies to investigate protein structure and function require that a protein be fragmented in order to produce pieces that are suitable for further detailed investigation. Some of the main types of experiments that require protein fragmentation are summarized in Section 1. of this chapter. The next two sections are concerned with the methods used to generate fragments of a protein; these can be grouped conveniently depending on whether the fragmentation causes denaturation or not. The final section of this chapter considers the use of recombinant protein technology to produce protein fragments.

Keywords

Proteolytic Enzyme Peptide Bond Limited Proteolysis Triose Phosphate Isomerase Cyanogen Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    Richardson J. S. (1981), Adv. Prot. Chan. 34, 147–339.Google Scholar
  2. 2.
    Humble E. (1980), Biochim. Biophys. Acta 626, 179–187.PubMedGoogle Scholar
  3. 3.
    Allen G. (1989), Sequencing of Proteins and Peptides, 2nd ed., Elsevier, Amsterdam.Google Scholar
  4. 4.
    Gross E. and Witkop B. (1962), J. Biol. Chem. 237, 1856–1860.PubMedGoogle Scholar
  5. 5.
    Bornstein P. and Balian G. (1977), Methods Enzymol 47, 132–145.PubMedCrossRefGoogle Scholar
  6. 6.
    Mahoney W. C. and Hermodson M. A. (1979), Biochemistry 18, 3810–3814.PubMedCrossRefGoogle Scholar
  7. 7.
    Landon M. (1977), Methods Enzymol. 47, 145–149.PubMedCrossRefGoogle Scholar
  8. 8.
    Tarr G. E. (1986), Methods of Protein Microcharacterization, (Shively J. E., ed.), Humana, Clifton, NJ, pp. 162–163.Google Scholar
  9. 9.
    Hayes J. D., Kerr L. A., and Cronshaw A. D. (1989), Biochem. J. 264, 437–445.PubMedGoogle Scholar
  10. 10.
    Thorley-Lawson D. A. and Green N. M. (1975), Eur. J. Biochem. 59, 193–200.PubMedCrossRefGoogle Scholar
  11. 11.
    Geisow M. J. and Beaven G. H. (1977), Biochem. J. 161, 619–625.PubMedGoogle Scholar
  12. 12.
    Richards F. M. and Vithayathil P. J. (1959), J. Biol. Chem. 234, 1459–1465.PubMedGoogle Scholar
  13. 13.
    Porter R. R. (1959), Biochem. J. 73, 119–126.PubMedGoogle Scholar
  14. 14.
    Pohl G., Källström M., Bergsdorf N., Wallén P., and Jörnvall H. (1984), Biochemistry 23, 3701–3707.PubMedCrossRefGoogle Scholar
  15. 15.
    Leavis P. C, Rosenfeld S., and Lu R. C. (1978), Biochim. Biophys. Acta 535, 281–286.PubMedGoogle Scholar
  16. 16.
    Jollés J., Fiat A. M, Alais C, and Jollés P. (1973), FEBS Lett. 30, 173–176.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1993

Authors and Affiliations

  • Linda A. Fothergill-Gilmore
    • 1
  1. 1.University of EdinburghEdinburghScotland, UK

Personalised recommendations