Advertisement

Functional Attributes of Protein Isolates

Foods
  • Chester Myers
Protocol
Part of the Biological Methods book series (BM)

Abstract

The highly specific structural requirements of proteins used for medical and pharmaceutical applications (1,2) are usually replaced by nutritional and functional considerations in food systems. The latter have often not taken into consideration that changes in the native biological structure will have significant impact on properties in a food matrix.

Keywords

Phytic Acid Thermal Denaturation Protein Dispersion Half Band Width Thermal Gelation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F Franks, ed., Churacterisatlon of Protern Conformatzon and Function Symposium Press, London.Google Scholar
  2. 2.
    R. Lumry and R. BiItonen, in Structure and Stability of Biological MacromoZecules (S. N. Timasheff and G. D. Fasman, ed.) Marcel Dekker, New York (1969).Google Scholar
  3. 3.
    K. Saio and T. Watanabe, J. Texture Studies 9, 135–157 (1978).CrossRefGoogle Scholar
  4. 4.
    P. Sherman, Emulsion Science Academic, New York (1968).Google Scholar
  5. 5.
    P. Sherman, in ZndustriaZ Rheology Academic, New York (1970).Google Scholar
  6. 6.
    D. H. Napper, in Chemistry and Technology of Water-Soluble Polymers (C. A. Finch, ed.) Plenum, New York (1983).Google Scholar
  7. 7.
    T. F. Busby and K. C. Ingham, Biochim. Biochim. Acta 799, 80–89 (1984).CrossRefGoogle Scholar
  8. 8.
    J. J. Scheidegger, International Archives of Allergy and Applied Immunology, 7, 103–110 (1955).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Graber and C. A. Williams, Biochim. Biophys. Acta 10, 193–194 (1953).CrossRefGoogle Scholar
  10. 10.
    W. B. Gratzer and R. Mendelsohn, in Techniques in Protein and Enzyme Biochemistry ElsevierlNorth-Holland Biomedical, Amsterdam (1978).Google Scholar
  11. 11.
    J. W. Donovan, in Physical Principles and Techniques of Protein Chemistry Pt. A (S. J. Leach, ed) Academic, New York (1969).Google Scholar
  12. 12.
    D. B. Wetlaufer, Adv. Prot. Chem. 17, 303–390 (1962).CrossRefGoogle Scholar
  13. 13.
    V. S. Ananthanarayanan and C. C. Bigelow, Biochemistry 8, 3717–3723 (1969).PubMedCrossRefGoogle Scholar
  14. 13a.
    V. S. Ananthanarayanan and C. C. Bigelow, Biochemistry 8, 3723–3728 (1969).PubMedCrossRefGoogle Scholar
  15. 14.
    C. C. Bigelow, Camp. Rend. Lab. carlberg 31, 305–324 (1960).Google Scholar
  16. 15.
    C. C. Bigelow and I. I. Geschwind, Camp. Rend. Lab. Carlsberg 31, 283–304 (1960).Google Scholar
  17. 16.
    E. P. Pittz, J. C. Lee, B. Bablouzian, R. Townend, and S. N. Timasheff, Meth. Enzymol. XXVII, 209–256 (1973).CrossRefGoogle Scholar
  18. 17.
    H. H. Friedman, J. E. Whitney, and A. S. Szczesniak, J. Food Sci. 28, 390–396 (1963).CrossRefGoogle Scholar
  19. 18.
    J. J. Cameron and C. D. Myers, US Patent #4,366,097 (1982).Google Scholar
  20. 19.
    R. F. Chen, H. Edelhoch, and R. F. Steiner, in Physical Principles and Techniques of Protein Chemistry Pt. A (S. J. Leach, ed.) Academic, New York (1969).Google Scholar
  21. 20.
    I. Feldman, D. Young, and R. McGuire, Biopolymers 14, 335–351 (1975).PubMedCrossRefGoogle Scholar
  22. 21.
    F. W. J. Teale, Biochem. J. 76, 381–388 (1960).PubMedGoogle Scholar
  23. 22.
    F. W. J. Teale and G. Weber, Biochem. J. 65, 476–482 (1957).PubMedGoogle Scholar
  24. 23.
    I. Weinryb and R. F. Steiner, Biochemistry 9, 135–146 (1970).PubMedCrossRefGoogle Scholar
  25. 24.
    G. Weber, Biochem. J. 51, 145–167 (1952).PubMedGoogle Scholar
  26. 24a.
    G. Weber, Adv. Prot. Chem. 8, 415–459 (1953).CrossRefGoogle Scholar
  27. 25.
    J. R. Lakowicz, J. Biochem. Biophys. Meth. 2, 91–119 (1980).PubMedCrossRefGoogle Scholar
  28. 26.
    G. M. Edelman and W. O. McClure, Acct’s Chem. Res. 1, 65–70 1968).CrossRefGoogle Scholar
  29. 27.
    L. Stryer, Science 162, 526–533 (1968).PubMedCrossRefGoogle Scholar
  30. 28.
    J. L. Wang and G. M. Edelman, J. Biol. Chem. 246, 1185–1191 (1971).PubMedGoogle Scholar
  31. 29.
    A. Kato and S. Nakai, Biochim. Biophys. Acta 624, 13–20 (1980).PubMedGoogle Scholar
  32. 30.
    A. Kato, N. Tsutsui, N. Matsudomi, K. Kobayashi, and S. Nakai, Agric. Biol. Chem. 45, 2755–2760 (1981).CrossRefGoogle Scholar
  33. 31.
    E. Li-Chan, S. Nakai, and D. F. Wood, J. Food Sci. 49, 345–350 (1984).CrossRefGoogle Scholar
  34. 32.
    A.-A. Townsend and S. Nakai, J. Food Sci. 48, 588–594 (1983).CrossRefGoogle Scholar
  35. 33.
    L. P. Voutsinas, E. Cheung, and S. Nakai, J. Food Sci. 48, 26–32 (1983).CrossRefGoogle Scholar
  36. 34.
    L. P. Voutsinas, S. Nakai, and V. R. Harwalker, Can. Inst. Food Sci. Technol. J. 16, 185–190 (1983).Google Scholar
  37. 35.
    P. L. Privalov, Adv. Prot. Chem. 33, 167–241 (1979).CrossRefGoogle Scholar
  38. 35a.
    P. L. Privalov, Adv. Prot. Chem. 35a, 1–104 (1982).CrossRefGoogle Scholar
  39. 36.
    F. Franks, in Water: A Comprehensive Treatise vol. 4, Aqueous Solutions of Amphiphiles and Macromolecules (F. Franks, ed.) Plenum, New York (1975).Google Scholar
  40. 37.
    R. B. Thompson and J. R. Lakowicz, Biochemistry 23, 3411–3417 (1984).PubMedCrossRefGoogle Scholar
  41. 38.
    C. J. French and J. M. Gosline, Biochim. Biophys. Acta 537, 386–394 (1978).PubMedGoogle Scholar
  42. 39.
    J. F. Brandts, in Thennobiology (A. H. Rose, ed.) Academic, New York (1967).Google Scholar
  43. 40.
    D. G. Oakenfull and D. E. Fenwick, J. Phys. Chem. 78, 1759–1763 (1974).CrossRefGoogle Scholar
  44. 41.
    M. J. Grutter, R. B. Hawkes, and B. W. Matthews, Nature 277, 667–669 (1979).PubMedCrossRefGoogle Scholar
  45. 42.
    C. C. Bigelow, J. Theoret. Biol. 16, 187–211 (1967).CrossRefGoogle Scholar
  46. 43.
    J. Janin, Nature 227, 491–492 (1979).CrossRefGoogle Scholar
  47. 44.
    R. Wolfenden, L. Anderson, P. M. Cullis, and C. C. B. Southgate, Biochemistry 20, 849–855 (1981).PubMedCrossRefGoogle Scholar
  48. 45.
    B. Yu. Zaslavsky, N. M. Mestichkina, L. M. Miheeva, and S. V. Rogozhin, J. Chromatogr. 240, 21–28 (1982).CrossRefGoogle Scholar
  49. 46.
    E. Eisenberg, R. M. Weiss, and T. C. Terwilliger, Nature 299, 371–374 (1982).PubMedCrossRefGoogle Scholar
  50. 46a.
    E. Eisenberg, R. M. Weiss, and T. C. Terwilliger, Proc. Nat. Acad. Sct. USA 81, 140–144 (1984).CrossRefGoogle Scholar
  51. 47.
    A. B. Morrison, in Symposium on Foods: Proteins and Their Reactions (H. W. Shultz and A. F. Anglemier, eds.) AVI, Westport, Connecticut (1964).Google Scholar
  52. 48.
    P. M. Masters and M. Friedman, J. Agric. Food Chem. 27, 507–511 (1979).PubMedCrossRefGoogle Scholar
  53. 49.
    S. N. Pandey and N. Thejappa, JAOCS 52, 312–315 (1975).PubMedCrossRefGoogle Scholar
  54. 50.
    D. Selivonchick, Univ. Oregon, in seminar, Toronto (1979).Google Scholar
  55. 51.
    A. J. Adler, N. J. Geenfield, and G. D. Fasman, Meth. Enzymol. XXVII(D), 675–735 (1973).CrossRefGoogle Scholar
  56. 52.
    C. Tanford, Physical Chemistry of Macromolecules, John Wiley, New York (1961).Google Scholar
  57. 53.
    H. B. Bull and K. Breese, Arch. Biochem. Biophys. 158, 681–686 (1973).PubMedCrossRefGoogle Scholar
  58. 54.
    M. Dixon and E. C. Webb, Enzymes 2nd ed., Longmans, London (1964).Google Scholar
  59. 55.
    J. C. Lee, K. Gekko, and S. N. Timasheff, Meth. Enzymol. 61(H), 26–49 (1979).PubMedCrossRefGoogle Scholar
  60. 56.
    J. C. Lee and S. N. Timasheff, J. Biol. Chem. 256, 7193–7201 (1981).PubMedGoogle Scholar
  61. 57.
    K. A. Lysko, R. Carlson, R. Taverna, J. Snow, and J. F. Brandts, Biochemistry 20, 5570–5576 (1981).PubMedCrossRefGoogle Scholar
  62. 58.
    M. G. Bezrukov, Angew. Chem. Ind. Ed. Engl. 18, 599–610 (1979).CrossRefGoogle Scholar
  63. 59.
    E. Dickinson and G. Stainsby, Colloids in Foods Applied Science Publishers, New York (1982).Google Scholar
  64. 60.
    W. Burchard, in Chemisty and Technology of Water-Soluble Polymers (C. A. Finch, ed.) Plenum, New York (1983).Google Scholar
  65. 61.
    S. Glasstone, in Textbook of Physical Chemistry D. Van Nostrand, New York (1946).Google Scholar
  66. 62.
    E. Eisenberg, Ann. Rev. Biochem. 53, 595–623 (1984).PubMedCrossRefGoogle Scholar
  67. 63.
    D. R. Absolom, A. W. Neumann, and C. J. vanOss, in Polymer Adsorption and Dispersion Stability (edE. D. Goddard and B. Vincent, eds.) ACS Symposium Series 240, ACS, Washington, DC (1984).Google Scholar
  68. 64.
    D. R. Absolom and Z. Policova, J. Disp. Sci. Tech., in press.Google Scholar
  69. 65.
    D. E. Graham and M. C. Phillips, J. Colloid Interface Sci. 70, 403–414 (1979).CrossRefGoogle Scholar
  70. 66.
    D. E. Graham and M. C. Phillips, J. Colloid Znterface Sci. 70, 415–426 (1979).CrossRefGoogle Scholar
  71. 67.
    D. E. Graham and M. C. Phillips, J. Colloid Interface Sci. 70, 427–439 (1979).CrossRefGoogle Scholar
  72. 68.
    D. E. Graham and M. C. Phillips, J. Colloid Interface Sci. 76, 227–239 (1980).CrossRefGoogle Scholar
  73. 69.
    D. E. Graham and M. C. Phillips, J. Colloid Interface Sci. 76, 240–249 (1980).CrossRefGoogle Scholar
  74. 70.
    F. MacRitchie, Adv. Prot. Chem. 32, 283–326 (1978).CrossRefGoogle Scholar
  75. 71.
    B. Vincent, in Polymer Adsorption and Dispersion Stability (E. D. God-dard and B. Vincent, eds.) ACS Symposium Series 240, ACS, Washington, DC (1984).Google Scholar
  76. 72.
    B. Vincent and S. G. Whittington, Surfaces and Colloids I2, 1–117 (1982).Google Scholar
  77. 73.
    K. Furusawa, Y. Kimura, and T. Tagawa, in Polymer Adsorption and Dispersion Stability (E. D. Goddard and B. Vincent, ed.) ACS Symposium Series 240, ACS, Washington, DC (1984).Google Scholar
  78. 74.
    J. N. Israelachvili and R. M. Pashley, J. Colloid Interface Sci. 98, 500–514 (1984).Google Scholar
  79. 75.
    V. V. Chavan, J. Dispersion Sci. Technol. 4, 47–104 (1983).CrossRefGoogle Scholar
  80. 76.
    D. R. Absolom, D. G. Wicks, C. D. Myers, and A. W. Neumann, submitted to JAOCS.Google Scholar
  81. 77.
    V. R. Kaufman and N. Garti, J. Dispersion Sci. Technol. 2, 475–490 (1981).CrossRefGoogle Scholar
  82. 78.
    M. Joly, in Surface and Colloid Science (E. Matijevic, ed.) Wiley-Interscience, New York (1972).Google Scholar
  83. 79.
    D. Gerson, Immunol. Meth. II, 105–138 (1981).Google Scholar
  84. 82.
    A. H. Clark, F. J. Judge, J. B. Richards, J. M. Stubbs, and A. Suggett, lntl. J. Peptide and Protein Res. 17, 380–392 (1981).CrossRefGoogle Scholar
  85. 83.
    A. dewaele, J. Am, Chem. Soc. 48, 2760–2776 (1926).CrossRefGoogle Scholar
  86. 84.
    P. G. Nutting, J. Franklin Inst. 191, 679 (1921).CrossRefGoogle Scholar
  87. 85.
    W. Ostwald, Kolloid Z. 36, 99–117 (1925).CrossRefGoogle Scholar
  88. 86.
    W. Ostwald, Kolloid Z. 36, 157–167 (1925).CrossRefGoogle Scholar
  89. 87.
    W. Ostwald, Kolloid Z. 36, 248–250 (1925).CrossRefGoogle Scholar
  90. 88.
    J. J. Rachis, Fed. Proc. 24, 1488–1493 (1965).Google Scholar
  91. 89.
    I. E. Liener, Arch. Biochem. Biophys. 54, 223–231 (1955).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • Chester Myers
    • 1
  1. 1.St. Lawrence Reactors Ltd.MissisaugaCanada

Personalised recommendations