Characterization and Functional Attributes of Protein Isolates

Biochemical Applications
  • Peter J. Lillford
Part of the Biological Methods book series (BM)


In this chapter we consider the properties of proteins isolated for their native function. The focus is on the native state of the protein and the subtle way in which evolution has tailored polypeptide chains to produce highly specific secondary, tertiary, and quarternary structure. For some proteins, this characterization is complete to atomic resolution (e.g., lysozyme, hemoglobin). This is because of the major efforts and technical advances in molecular biology in recent decades. It is important to recognize that for biochemical use, however, isolated material can be equally well characterized in terms of its “activity,” i.e., the ability to perform its intended function. The latter approach does not necessarily refer to any molecular configuration or even to the presence of molecules at all. This is particularly true for pharmacology, in which functional characteristics are largely pragmatic. For example, the active macromolecule in antisera is identifiably proteinaceous, but the British Pharmacopeia characterizes scorpion venom antiserum as a serum obtained from healthy animals having not more than 17.0 wt/vol % protein, and sufficient potency to neutralize the maximum amount of venom from a single sting (1).


Nuclear Magnetic Resonance Random Coil Optical Rotary Dispersion Natural Interferon Active Macromolecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Br. Pharmacopoeia vi, 863 (1980).Google Scholar
  2. 2.
    R. H. Haschemeyer and A. E. V. Haschemeyer, in Proteins—A Guide to Study by Physical and Chemical Methods Wiley, New York (1973).Google Scholar
  3. 3.
    C. Tanford, in Physical Chemtstry of Macromolecules Wiley, New (1961).Google Scholar
  4. 4.
    D. B. Wetlaufer, in Advances in Protein Chemistry (C.B. Anfinsen, C B. Anfinson, M. L. Anson, K. Bailey, J. T Edsall, eds ) Academic, New York and London (1962).Google Scholar
  5. 5.
    W. B. Gratzer, in Poly-α-Amino Acids (G. D. Fasman, ed ) Marcel Dekker, New York (1967)Google Scholar
  6. 6.
    J. T. Yang, personal commumcation.Google Scholar
  7. 7.
    W. Moffitt, J. Chem. Phys. 25 (3), 467–478 (1956).CrossRefGoogle Scholar
  8. 8.
    S. Beychok, in Poly-α-Amino Acids (G. D. Fasman, ed.) Marcel Dekker, New York (1967).Google Scholar
  9. 9.
    E. J. Ambrose and A. Elliott, Proc. Roy. Soc. A205, 47–60 (1951).Google Scholar
  10. 10.
    D. C. Phillips, Proc. Natl. Acad. Sci. USA 57, 484–495 (1967).CrossRefGoogle Scholar
  11. 11.
    M. F. Pentz, Eur. J Biochem. 8, 455–466 (1969).CrossRefGoogle Scholar
  12. 12.
    T. L. James, in Nuclear Magnetic Resonance Biochemistry Academic, New York (1975).Google Scholar
  13. 13.
    C. C. McDonald and W. D. Phillips, J, Am. Chem. Soc. 91, 1513–1521 (1969)CrossRefGoogle Scholar
  14. 14.
    P. J. Lillford, in Plant Proteins (G. Norton, ed.) Butterworths (1978).Google Scholar
  15. 15.
    I. D. Campbell, in N.M.R. in Biology (R. A. Dwek, ed.) Academic, London (1977)Google Scholar
  16. 16.
    I. D. Campbell, S. Lindskog, and A. I. White, J. Mol. Biol. 98, 597–614 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    B. A. Levine and J. R. P. Williams, Proc. Roy. Soc. Lond. A345, 5–22 (1975).Google Scholar
  18. 18.
    K. Wuthrich, Abstracts I.U.P.A.B. 8th International Biophysics Symposium, Bristol, UK (1984)Google Scholar
  19. 19.
    B. W. Low, J. Am. Chem. Soc. 74, 4830–4834 (1952).CrossRefGoogle Scholar
  20. 20.
    J. M. Creeth, Biochem. J. 51, 10–17 (1952).PubMedGoogle Scholar
  21. 21.
    O. Jardetsky and G. C. K. Roberts, ed., NMR in Molecular Biology Academic, New York (1981).Google Scholar
  22. 22.
    D. W. Urry and R. Walter, Proc. Natl. Acad. Sci. USA 68(5), 956–958 (1971).PubMedCrossRefGoogle Scholar
  23. 23.
    A. I. Richard Brewster and V. J. Hruby, Proc. Natl. Acad. Sci. USA 70(12), 1306–3809 (1973).Google Scholar
  24. 24.
    J. P. Meraldi, V. J. Hruby, and A. I. Richard Brewster, Proc. Natal. Acad. Sci. USA 74(4), 1373–1377 (1977).CrossRefGoogle Scholar
  25. 25.
    J. B. Fleischman, R. H. Pain, and R. R. Porter, Arch. Biochem. Biophys. (suppl.) 1, 114–180 (1962).Google Scholar
  26. 26.
    G. M. Edelman, B A. Cunningham, W. E Gall, P. D. Gottgheb, U.R.S. Rutishauser, and M. J. Waxdal, Proc. Natl. Acad. Sci. USA 63, 78–85 (1969).PubMedCrossRefGoogle Scholar
  27. 27.
    R. J. Poljak, L. M. Amzel, H. P. Avey, L. N. Becka, and A. Nisonoff, Nature New Bio. 235, 137–140 (1972).CrossRefGoogle Scholar
  28. 28.
    S. Rudikoff, M. Potter, D. M. Segal, E. A. Padlan, and D. R. Davies, Proc. Natl. Acad. Sci. USA 69, 3689–3692 (1972).PubMedCrossRefGoogle Scholar
  29. 29.
    E. A. Padlan, D. R. Davies, I. Pecht, D. Givol, and C. E. Wright, Cold Spring Harbor Symposium (1976).Google Scholar
  30. 30.
    R. A. Dwek, I. D. Campbell, R. E. Richards, and R. J. P. Williams, ed., NMR in Biology Academic, London (1977).Google Scholar
  31. 31.
    E. F. Osserman, R. E. Canfield and S. Beychok, eds., Lysozyme Academic, New York (1974).Google Scholar
  32. 32.
    A Fleming, Proc. Roy. Soc. Land. B93, 306–317 (1922).CrossRefGoogle Scholar
  33. 33.
    P Jolles,Angew Chem. 8(4), 227–294 (1960).Google Scholar
  34. 34.
    C. C. F. Blake, D. F. Koenig, G. A. Mair, A. C. T. North, D. C Phillrps, and V. R. Sarma, Nature 206, 757–761 (1965).PubMedCrossRefGoogle Scholar
  35. 35.
    C. C. F. Blake, L. N. Johnson, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma, Proc. Roy. Soc. Land. B167, 378–388 (1967)CrossRefGoogle Scholar
  36. 36.
    J. S. Cohen, Nature (Lond.) 223, 43–46 (1969).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Sternlicht and D. Wilson, Biochemistry 6, 2881–2892 (1967)PubMedCrossRefGoogle Scholar
  38. 38.
    G. P Hess and J. A. Rupley, Ann. Rev. Biochem. 40,1013–1044 (1971)PubMedCrossRefGoogle Scholar
  39. 39.
    A. Isaacs and J. Lmdenmann, Proc. Roy. Soc. B Land. B147, 258–263 (1957).CrossRefGoogle Scholar
  40. 40.
    S. P. Colowick and N. O. Kaplan, eds., Methods m Enzymology vol. 78, Academic, New York (1981)Google Scholar
  41. 41.
    S. P. Colowick and N 0. Kaplan, eds., Methods in Enzymology vol 79, Academic, New York (1981).Google Scholar
  42. 42.
    W. P. Levy, M. Rubenstein, J. Shively, V. de1 Valle, C-Y. Lai, J. Moschiva, L. Brink, L. Cresber, S. Stein, and S. Prestka, Proc. Natl. Acad. Sci. USA 78(10), 6186–6190 (1981).PubMedCrossRefGoogle Scholar
  43. 43.
    Economist 293, 86 (1984).Google Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • Peter J. Lillford
    • 1
  1. 1.Unrlever ResearchBedfordshireUK

Personalised recommendations