Analytical Electrophoresis

  • Colin Simpson
Part of the Biological Methods book series (BM)


The first true use of electrophoresis for the separation of proteins developed from the pioneering work of Tiselius (1) in 1937, but the concepts and developments that led to the introduction of the technique occurred in the mid-nineteenth century with Faraday’s laws of electrolysis. These laws predated the first accepted demonstration of the chromatographic technique by about 50 years. From Faraday’s laws the concept of transport numbers was developed by Hittorf in 1850. In 1870, Kohlrausch demonstrated the measurement of conductivity using an ac Wheatstone bridge system with a telephone receiver as the null indicating device. From conductivities, the concept of ionic mobilities was developed. These three concepts are fundamental to the development of electrophoresis. The moving boundary method of Tiselius, however, although a superb separation method, was a very difficult technique to control and had the disadvantage that only the slowest and fastest migrating species could be obtained in pure form and then only in small quantities. It was therefore not suited for preparative use. Interestingly, it was Martin’s development of partition and paper chromatography (2,3) that gave the stimulus to develop electrophoretic methods capable of separating components into zones using materials similar to those used in chromatography, Development was rapid, and there is now a powerful armoury of methods suitable for protein separation.


Protein Separation Focus Zone Separate Zone Beryllium Oxide Carrier Ampholyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Tiselius, Trans. Faraday Soc. 33, 524 (1937).CrossRefGoogle Scholar
  2. 2.
    A. J. P. Martin and R. L. M. Synge, Biochem. J. 35, 1358 (1941).PubMedGoogle Scholar
  3. 3.
    R. Consdon, A. H. Gordon, and A. J. P. Martin, Biochem. J. 38, 224 (1944).Google Scholar
  4. 4.
    I. Smith, ed., Chromatographic and Electrophoretic Techniques vol. 2, Zone Electrophoresis 4th ed., Heinemann, London (1976).Google Scholar
  5. 5.
    O. Gaal, G. A. Medgyesi, and L. Vereczkey, Electrophoresis in the Separation of Biological Macromolecules Wiley-Interscience, New York (1980).Google Scholar
  6. 6.
    H. Svensson, Acta. Chem. Scand. 15, 325 (1961).CrossRefGoogle Scholar
  7. 7.
    H. Svensson, Acta. Chem. Scand. 16, 456 (1962).CrossRefGoogle Scholar
  8. 8.
    A. Kolin, in Methods in Biochemical Analysis vol. 6 (D. Glick, ed.) Inter-science, New York (1958), p. 259.CrossRefGoogle Scholar
  9. 9.
    O. Vesterberg, Acta Chem. Scand. 23, 2653 (1969).CrossRefGoogle Scholar
  10. 10.
    N. Catsimpoolas, ed., Isoelectric Focussing Academic, New York (1976).Google Scholar
  11. 11.
    N. Catsimpoolas and J. W. Drysdale, eds., Biological and Biomedical Applications of Isoelectric Focusing Plenum, New York, London (1977).Google Scholar
  12. 12.
    P. G. Righetti and J. W. Drysdale, in Laboratory Techniques in Biochemistry and Molecular Biology (T. S. Work and E. Work, eds.) Elsevier, Amsterdam (1976).Google Scholar
  13. 13.
    H. Svensson, Acta Chem. Scand. 15, 325 (1961).CrossRefGoogle Scholar
  14. 14.
    B. J. Radola, Electrophoresis 1, 43 (1980).CrossRefGoogle Scholar
  15. 15.
    R. C. Allen, Electrophoresis 1, 32 (1980).CrossRefGoogle Scholar
  16. 16.
    A. Rosen, K. Ek, and P. Aman, J. Immunol. Meth. 28, (1979).Google Scholar
  17. 17.
    R. C. Allen, P. M. Oulla, P. Arnaud, and J. S. Baumstark, in Electrofocussing and Isotachophoresis (B. J. Radola and D. Graesslin, eds.) W. de Gruyter, Berlin (1977), pp. 255.Google Scholar
  18. 18.
    A. Gorg, W. Postel, and R. Westmeier, Anal. Brochem. 89, 60 (1979).CrossRefGoogle Scholar
  19. 19.
    B. J. Radola, in Electrophoresis ’79 (B. J. Radola, ed.) W. de Gruyter, Berlin (1980), p. 79.Google Scholar
  20. 20.
    B. J. Radola, in Electrophoretic Techniques (C. F. Simpson and M. Whittaker, eds.) Academic, London (1983).Google Scholar
  21. 21.
    B. Bjelliquist, K. Ek, P. G. Righetti, E. Gianazzi, E. Gory, R. Westermeister, and W. Postel, J. Biochem. Biophys. Methods 6, 317 (1982).CrossRefGoogle Scholar
  22. 22.
    V. Gasparic, B. Bjellqvist, and A. Rosengren, Various patents, see LKB application note 321.Google Scholar
  23. 23.
    Y. Walbroehl and J. W. Jorgenson, J. Chromatog. 315, 135 (1984)CrossRefGoogle Scholar
  24. 24.
    J. W. Jorgenson and K. D. Lukacs, Science 222, 266 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Hjerten, J. Chromatog. 270, 1 (1983).CrossRefGoogle Scholar
  26. 26.
    S. Hjerten, Acta Chem. Scand. B36, 203 (1982).Google Scholar
  27. 27.
    M. E. Himmel and P. G. Squire, Int. J. Peptide Protein Res. 17, 365 (1981).CrossRefGoogle Scholar
  28. 28.
    F. Everaerts and Th. P. E. M. Verheggen, in Electrophoretic Techniques (C. F. Simpson and M. Whittaker, eds.) Academic, London (1983), pp. 149–196.Google Scholar
  29. 29.
    C. J. Holloway, R. V. Battersby, B. Bussenschutt, G. Bulge, and J. Lustorff, in Analytical and Preparative Isotachophoresis (C. J. Holloway, ed.) Walter de Gruyter, Berlin (1984), pp. 271–289.Google Scholar
  30. 30.
    J. Bours, in Analytical and Preparative Isotachophoresis (C. J. Holloway, ed.) Walter de Gruyter, Berlin (1984), pp. 315–324.Google Scholar
  31. 31.
    C. H. Brogren, in Electrofocussing and Isotachophoresis (B. J, Radola and D. Grasslin, eds.) W. de Gruyter, Berlin (1977), pp. 549–558.Google Scholar
  32. 32.
    O. Smithies and M. D. Poulik, Nature 177, 1033 (1956).PubMedCrossRefGoogle Scholar
  33. 33.
    G. Dale and A. L. Latner, Clin. Chem. Acta 24, 61 (1969).CrossRefGoogle Scholar
  34. 34.
    P. H. O’Farrell, J. Biol. Chem. 250, 4007 (1975).PubMedGoogle Scholar
  35. 35.
    N. G. Anderson and N. L. Anderson, Anal. Biochem. 85, 331 (1978) [see also M. J. Dunn and A. H. M. Burghes, Electrophoresis 4, 973 1983, for a recent review with 215 references].PubMedCrossRefGoogle Scholar
  36. 36.
    P. Z. O’Farrell, H. M. Goodman, and P. H. O’Farrell, Cell 12, 1133 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    C. Wrigley, Biochem. Genetics 4, 509 (1970).CrossRefGoogle Scholar
  38. 38.
    K. G. Kenrick and J. Margolis, Anal. Blochem. 33, 204 (1970).CrossRefGoogle Scholar
  39. 39.
    D. H. Leaback, in Isoelectric Focussing (J. P. Arbuthnott and J A. Beeley, eds.) Butterworths, London (1975), pp. 201.Google Scholar
  40. 40.
    H. Stegmann, H. Francksen, and V. Macko, Z. Nuturforsch 28, 722 (1973).Google Scholar
  41. 41.
    T. Barrett and H. J. Gould, Eur. J. Biochem. 93, 329 (1979).Google Scholar
  42. 42.
    G. P. Tuszynski, C. A Buck, and L. Warren, Anal. Biochem. 93, 329 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    C. H. Brogren, in Electrophoresis and Isotachophoresis (B J. Radola and D. Grasslin, ed.) W de Gruyter, Berlin (1977), pp. 549.Google Scholar
  44. 44.
    P. D. Eckersall and J. A. Beeley, Electrophoresis 1, 62 (1980).CrossRefGoogle Scholar
  45. 46.
    J. S. Fawcett, in Electrophoretic Techniques (C. F. Simpson and M. Whittaker, eds.) Academic, London (1983), pp. 57–80.Google Scholar
  46. 47.
    A. Gorg, W. Postel, and R. Westermeier, in Electrophoresis ’79 (B. J. Radola, ed.) W. de Gruyter, Berlin (1980), p. 67.Google Scholar
  47. 48.
    P. E. Righetti and F Chellemi, J. Chromatog. 157, 253 (1978).CrossRefGoogle Scholar
  48. 49.
    T. Bibring and J. Baxendale, Anal. Biochem. 85, 1 (1978).PubMedCrossRefGoogle Scholar
  49. 50.
    R. E. Allen, K. C. Marsak, and P. K. McAllister, Anal. Biochem. 104, 494 (1980).PubMedCrossRefGoogle Scholar
  50. 51.
    H. D. Kay, Electrophoresis 2, 304 (1981)CrossRefGoogle Scholar
  51. 52.
    S. Peats, Analyt. Biochem. 140, 178 (1984).PubMedCrossRefGoogle Scholar
  52. 53.
    T. Marshall, Analyt. Biochem. 136, 340 (1984).PubMedCrossRefGoogle Scholar
  53. 54.
    F. Lasne, O. Benzerra, and Y. Lasne, Analyt. Biochem. 132, 338 (1983).PubMedCrossRefGoogle Scholar
  54. 55.
    J. Bossinger, M. J. Miller, K. P. Vo, P. Geudushik, and N. H. Xung, J. Biol. chem. 254, 7960 (1975).Google Scholar
  55. 56.
    E. Kitatoe, M. Mayhara, N. Kiraska, H. Ueta, and K. Utumsi, Anal. Biochem. 134, 295 (1984).CrossRefGoogle Scholar
  56. 57.
    J. D. Weinstein, T: G. Obrig, and J. B. Weiggle, J. Chromatog. 157, 198 (1978).Google Scholar
  57. 58.
    E. M. Southern, J. Mol. Biol. 98, 503 (1975).PubMedCrossRefGoogle Scholar
  58. 59.
    J. Renart, J. Reiser, and G. R. Stark, Proc. Natl. Acad. Sci. USA 76, 4350 (1979).CrossRefGoogle Scholar
  59. 60.
    H. Towbin, T Staehelin, and J. Gordon, Proc. Natl. Acad. Sci. USA 76, 4350 (1979).PubMedCrossRefGoogle Scholar
  60. 61.
    J. M. Gershoni and G. E. Palade, Anal. Biochem. 131, 1 (1983).PubMedCrossRefGoogle Scholar
  61. 62.
    J. Symington, in Two-Dimensional Gel Electrophoresis of Proteins: Methods and Applications (J. E. Celis and R. Bravo, eds.) Academic, New York (1983).Google Scholar
  62. 63.
    H.H. Laver and D. McManigill, Anal. Chem. 58, 166 (1986).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • Colin Simpson
    • 1
  1. 1.Department of Chemistry, Chelsea CollegeUniverszty of LondonLondonUK

Personalised recommendations