Advertisement

Mouse Models to Study Antiobesogenic Effects of Carotenoids

  • Joan RibotEmail author
  • Bojan Stojnic
  • Andreu Palou
  • M. Luisa Bonet
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2083)

Abstract

Carotenoids entail a vast potential to tackle health problems including obesity and some of its comorbidities. The use of animal models remains necessary, particularly at early stages of research (preclinical) and for advancing in mechanistic aspects of carotenoid action. No single animal model completely mimics human absorption and metabolism of carotenoids, and the best model must be chosen considering the specific application, characteristics of the individual models, and funding and facilities available. Here, we propose three protocols in mice to investigate the potential of a given carotenoid, carotenoid mixture, or carotenoid-rich extract to (a) counteract the development of obesity and prevent the metabolic alterations caused by feeding mice a moderate high-fat diet; (b) improve the metabolic profile of obese animals with metabolic alterations caused by chronic high-fat diet feeding; and (c) act as coadjuvants in weight loss strategies (reversion to a low fat diet) applied to diet-induced obese animals.

Key words

Animal models Obesity Metabolic syndrome Carotenoids 

Notes

Acknowledgments

BS is the recipient of a “La Caixa” Foundation predoctoral contract at the University of Balearic Islands. The group is a member of the European COST-Action EUROCAROTEN (CA15136; EU Framework Programme Horizon 2020), and the Spanish Network of Excellence CaRed (BIO2015-71703-REDT and BIO2017-90877-REDT; Agencia Estatal de Investigación, MICIU/FEDER, EU). CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) is an initiative of the ISCIII (Spanish Government).

References

  1. 1.
    Palou A, Picó C, Bonet ML (2003) The molecular basis of body weight control. Forum Nutr 56:164–168PubMedGoogle Scholar
  2. 2.
    Scully T (2014) Public health: society at large. Nature 508(7496):S50–S51.  https://doi.org/10.1038/508S50aCrossRefPubMedGoogle Scholar
  3. 3.
    Shao A, Drewnowski A, Willcox DC, Krämer L, Lausted C, Eggersdorfer M, Mathers J, Bell JD, Randolph RK, Witkamp R, Griffiths JC (2017) Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur J Nutr 56(Suppl 1):1–21.  https://doi.org/10.1007/s00394-017-1460-9CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vasileva LV, Marchev AS, Georgiev MI (2018) Causes and solutions to “globesity”: the new fa(s)t alarming global epidemic. Food Chem Toxicol 121:173–193.  https://doi.org/10.1016/j.fct.2018.08.071CrossRefPubMedGoogle Scholar
  5. 5.
    Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121(6):2111–2117.  https://doi.org/10.1172/JCI57132CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Isolauri E (2017) Microbiota and obesity. Nestle Nutr Inst Workshop Ser 88:95–105.  https://doi.org/10.1159/000455217CrossRefPubMedGoogle Scholar
  7. 7.
    Bonet ML, Canas JA, Ribot J, Palou A (2015) Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys 572:112–125.  https://doi.org/10.1016/j.abb.2015.02.022CrossRefPubMedGoogle Scholar
  8. 8.
    Bonet ML, Canas JA, Ribot J, Palou A (2016) Carotenoids in adipose tissue biology and obesity. Subcell Biochem 79:377–414.  https://doi.org/10.1007/978-3-319-39126-7_15CrossRefPubMedGoogle Scholar
  9. 9.
    Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93.  https://doi.org/10.1016/j.plipres.2018.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee CM, Boileau AC, Boileau TW, Williams AW, Swanson KS, Heintz KA, Erdman JW (1999) Review of animal models in carotenoid research. J Nutr 129(12):2271–2277.  https://doi.org/10.1093/jn/129.12.2271CrossRefPubMedGoogle Scholar
  11. 11.
    Palczewski G, Widjaja-Adhi MA, Amengual J, Golczak M, von Lintig J (2016) Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism. J Lipid Res 57(9):1684–1695.  https://doi.org/10.1194/jlr.M069021CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Amengual J, Gouranton E, van Helden YG, Hessel S, Ribot J, Kramer E, Kiec-Wilk B, Razny U, Lietz G, Wyss A, Dembinska-Kiec A, Palou A, Keijer J, Landrier JF, Bonet ML, von Lintig J (2011) Beta-carotene reduces body adiposity of mice via BCMO1. PLoS One 6(6):e20644.  https://doi.org/10.1371/journal.pone.0020644CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Musinovic H, Bonet ML, Granados N, Amengual J, von Lintig J, Ribot J, Palou A (2014) Beta-carotene during the suckling period is absorbed intact and induces retinoic acid dependent responses similar to preformed vitamin a in intestine and liver, but not adipose tissue of young rats. Mol Nutr Food Res 58 (11):2157–2165. doi: https://doi.org/10.1002/mnfr.201400457
  14. 14.
    Granados N, Amengual J, Ribot J, Musinovic H, Ceresi E, von Lintig J, Palou A, Bonet ML (2013) Vitamin a supplementation in early life affects later response to an obesogenic diet in rats. Int J Obes 37(9):1169–1176.  https://doi.org/10.1038/ijo.2012.190CrossRefGoogle Scholar
  15. 15.
    Arreguín A, Ribot J, Mušinović H, von Lintig J, Palou A, Bonet ML (2018) Dietary vitamin a impacts DNA methylation patterns of adipogenesis-related genes in suckling rats. Arch Biochem Biophys 650:75–84.  https://doi.org/10.1016/j.abb.2018.05.009CrossRefPubMedGoogle Scholar
  16. 16.
    Nilsson C, Raun K, Yan FF, Larsen MO, Tang-Christensen M (2012) Laboratory animals as surrogate models of human obesity. Acta Pharmacol Sin 33(2):173–181.  https://doi.org/10.1038/aps.2011.203CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Panchal SK, Poudyal H, Iyer A, Nazer R, Alam MA, Diwan V, Kauter K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L (2011) High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57(5):611–624.  https://doi.org/10.1097/FJC.0b013e31821b1379CrossRefPubMedGoogle Scholar
  18. 18.
    Panchal SK, Brown L (2011) Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011:351982.  https://doi.org/10.1155/2011/351982CrossRefPubMedGoogle Scholar
  19. 19.
    Lai M, Chandrasekera PC, Barnard ND (2014) You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 4:e135.  https://doi.org/10.1038/nutd.2014.30CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ventura LL, Fortes NC, Santiago HC, Caliari MV, Gomes MA, Oliveira DR (2017) Obesity-induced diet leads to weight gain, systemic metabolic alterations, adipose tissue inflammation, hepatic steatosis, and oxidative stress in gerbils. PeerJ 5:e2967.  https://doi.org/10.7717/peerj.2967CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mustonen AM, Puukka M, Rouvinen-Watt K, Aho J, Asikainen J, Nieminen P (2009) Response to fasting in an unnaturally obese carnivore, the captive European polecat Mustela putorius. Exp Biol Med (Maywood) 234(11):1287–1295.  https://doi.org/10.3181/0904-RM-140CrossRefGoogle Scholar
  22. 22.
    Hinney A, Vogel CI, Hebebrand J (2010) From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatry 19(3):297–310.  https://doi.org/10.1007/s00787-010-0096-6CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rosini TC, Silva AS (1992) Moraes C (2012) diet-induced obesity: rodent model for the study of obesity-related disorders. Rev Assoc Med Bras 58(3):383–387Google Scholar
  24. 24.
    Petrov PD, Ribot J, Palou A, Bonet ML (2015) Improved metabolic regulation is associated with retinoblastoma protein gene haploinsufficiency in mice. Am J Physiol Endocrinol Metab 308(2):E172–E183.  https://doi.org/10.1152/ajpendo.00308.2014CrossRefPubMedGoogle Scholar
  25. 25.
    Marquardt N, Feja M, Hünigen H, Plendl J, Menken L, Fink H, Bert B (2018) Euthanasia of laboratory mice: are isoflurane and sevoflurane real alternatives to carbon dioxide? PLoS One 13(9):e0203793.  https://doi.org/10.1371/journal.pone.0203793CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reynés B, Serrano A, Petrov PD, Ribot J, Chetrit C, Martínez-Puig D, Bonet ML, Palou A (2016) Anti-obesity and insulin-sensitising effects of a glycosaminoglycan mix. J Funct Foods 26:350–362.  https://doi.org/10.1016/j.jff.2016.07.022CrossRefGoogle Scholar
  27. 27.
    Rodriguez E, Ribot J, Rodriguez AM, Palou A (2004) PPAR-gamma 2 expression in response to cafeteria diet: gender- and depot-specific effects. Obes Res 12(9):1455–1463.  https://doi.org/10.1038/oby.2004.182CrossRefPubMedGoogle Scholar
  28. 28.
    Ribot J, Rodríguez AM, Rodríguez E, Palou A (2008) Adiponectin and resistin response in the onset of obesity in male and female rats. Obesity (Silver Spring) 16(4):723–730.  https://doi.org/10.1038/oby.2008.113CrossRefGoogle Scholar
  29. 29.
    Reynés B, García-Ruiz E, Díaz-Rúa R, Palou A, Oliver P (2014) Reversion to a control balanced diet is able to restore body weight and to recover altered metabolic parameters in adult rats long-term fed on a cafeteria diet. Food Res Int 64:839–848.  https://doi.org/10.1016/j.foodres.2014.08.012CrossRefPubMedGoogle Scholar
  30. 30.
    Sato Mito N, Suzui M, Yoshino H, Kaburagi T, Sato K (2009) Long term effects of high fat and sucrose diets on obesity and lymphocyte proliferation in mice. J Nutr Health Aging 13(7):602–606CrossRefGoogle Scholar
  31. 31.
    Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC, Kuhn CM, Rebuffé-Scrive M (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and a/J mice. Metabolism 44(5):645–651CrossRefGoogle Scholar
  32. 32.
    Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15(4):798–808.  https://doi.org/10.1038/oby.2007.608CrossRefGoogle Scholar
  33. 33.
    Krishnan S, Cooper JA (2014) Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr 53(3):691–710.  https://doi.org/10.1007/s00394-013-0638-zCrossRefPubMedGoogle Scholar
  34. 34.
    Voigt A, Ribot J, Sabater AG, Palou A, Bonet ML, Klaus S (2015) Identification of Mest/Peg1 gene expression as a predictive biomarker of adipose tissue expansion sensitive to dietary anti-obesity interventions. Genes Nutr 10(5):477.  https://doi.org/10.1007/s12263-015-0477-zCrossRefGoogle Scholar
  35. 35.
    Voigt A, Agnew K, van Schothorst EM, Keijer J, Klaus S (2013) Short-term, high fat feeding-induced changes in white adipose tissue gene expression are highly predictive for long-term changes. Mol Nutr Food Res 57(8):1423–1434.  https://doi.org/10.1002/mnfr.201200671CrossRefPubMedGoogle Scholar
  36. 36.
    Margareto J, Gómez-Ambrosi J, Marti A, Martínez JA (2001) Time-dependent effects of a high-energy-yielding diet on the regulation of specific white adipose tissue genes. Biochem Biophys Res Commun 283(1):6–11.  https://doi.org/10.1006/bbrc.2001.4733CrossRefPubMedGoogle Scholar
  37. 37.
    Ciapaite J, van den Broek NM, Te Brinke H, Nicolay K, Jeneson JA, Houten SM, Prompers JJ (2011) Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats. Biochim Biophys Acta 1811(7–8):441–451.  https://doi.org/10.1016/j.bbalip.2011.05.005CrossRefPubMedGoogle Scholar
  38. 38.
    Li CC, Liu C, Fu M, Hu KQ, Aizawa K, Takahashi S, Hiroyuki S, Cheng J, von Lintig J, Wang XD (2018) Tomato powder inhibits hepatic Steatosis and inflammation potentially through restoring SIRT1 activity and Adiponectin function independent of carotenoid cleavage enzymes in mice. Mol Nutr Food Res 62(8):e1700738. doi: https://doi.org/10.1002/mnfr.201700738
  39. 39.
    de Castro UG, dos Santos RA, Silva ME, de Lima WG, Campagnole-Santos MJ, Alzamora AC (2013) Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis 12:136.  https://doi.org/10.1186/1476-511X-12-136CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Amengual J, Lobo GP, Golczak M, Li HN, Klimova T, Hoppel CL, Wyss A, Palczewski K, von Lintig J (2011) A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 25(3):948–959.  https://doi.org/10.1096/fj.10-173906CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S, Hoeller U, Elste V, Hunziker W, Goralczyk R, Oberhauser V, von Lintig J, Wyss A (2007) CMO1 deficiency abolishes vitamin a production from beta-carotene and alters lipid metabolism in mice. J Biol Chem 282(46):33553–33561.  https://doi.org/10.1074/jbc.M706763200CrossRefPubMedGoogle Scholar
  42. 42.
    West DB, Waguespack J, McCollister S (1995) Dietary obesity in the mouse: interaction of strain with diet composition. Am J Phys 268(3 Pt 2):R658–R665.  https://doi.org/10.1152/ajpregu.1995.268.3.R658CrossRefGoogle Scholar
  43. 43.
    Reusch JEB, Kumar TR, Regensteiner JG, Zeitler PS, Participants C (2018) Identifying the critical gaps in research on sex differences in metabolism across the life span. Endocrinology 159(1):9–19.  https://doi.org/10.1210/en.2017-03019CrossRefPubMedGoogle Scholar
  44. 44.
    Priego T, Sanchez J, Pico C, Palou A (2008) Sex-differential expression of metabolism-related genes in response to a high-fat diet. Obesity (Silver Spring) 16(4):819–826.  https://doi.org/10.1038/oby.2007.117CrossRefGoogle Scholar
  45. 45.
    Lobo GP, Hessel S, Eichinger A, Noy N, Moise AR, Wyss A, Palczewski K, von Lintig J (2010) ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta,beta-carotene absorption and vitamin a production. FASEB J 24(6):1656–1666.  https://doi.org/10.1096/fj.09-150995CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Murano I, Morroni M, Zingaretti MC, Oliver P, Sanchez J, Fuster A, Pico C, Palou A, Cinti S (2005) Morphology of ferret subcutaneous adipose tissue after 6-month daily supplementation with oral beta-carotene. Biochim Biophys Acta 1740(2):305–312.  https://doi.org/10.1016/j.bbadis.2004.10.012CrossRefPubMedGoogle Scholar
  47. 47.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22(3):659–661.  https://doi.org/10.1096/fj.07-9574LSFCrossRefPubMedGoogle Scholar
  48. 48.
    Blanchard OL, Smoliga JM (2015) Translating dosages from animal models to human clinical trials--revisiting body surface area scaling. FASEB J 29(5):1629–1634.  https://doi.org/10.1096/fj.14-269043CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Joan Ribot
    • 1
    Email author
  • Bojan Stojnic
    • 1
  • Andreu Palou
    • 1
  • M. Luisa Bonet
    • 1
  1. 1.Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB) of the Universitat de les Illes BalearsCIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Institut d’Investigació Sanitària Illes Balears (IdISBa)Palma de MallorcaSpain

Personalised recommendations