Advertisement

Patch-Clamp Fluorometry and Its Applications to the Study of Ion Channels

  • Esteban Suárez-Delgado
  • León D. Islas
Protocol
Part of the Neuromethods book series (NM, volume 152)

Abstract

Patch-clamp remains the premier technique to study ion channel properties. Among the more useful extensions of patch-clamp, is the simultaneous use of fluorescence and spectroscopic techniques and electrophysiological recording known as patch-clamp fluorometry. This technique permits the simultaneous correlation of ionic current recordings with the activity of electrically silent protein conformational changes reported by the fluorescence measurement. Several recent and ongoing advances in fluorescent probes, genetically encoded fluorescent sensors based on fluorescent proteins or fluorescent noncanonical amino acids are making these methodologies more and more useful in the study of ion channel dynamics and regulation.

Key words

Patch-clamp Patch-clamp fluorometry Electrophysiology Membrane biophysics Ion channels Fluorescence Spectroscopy Live imaging Fluorescent proteins 

Notes

Acknowledgments

Work in the lab of LDI is supported by a grant from CONACYT No.252644; CONACYT-Fronteras de la Ciencia No.77 and DGAPA-PAPIIT IN209515.

References

  1. 1.
    Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA; [Great Britain]Google Scholar
  2. 2.
    Catterall WA, Wisedchaisri G, Zheng N (2017) The chemical basis for electrical signaling. Nat Chem Biol 13(5):455–463.  https://doi.org/10.1038/nchembio.2353CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rasmussen T (2016) How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44(4):1019–1025.  https://doi.org/10.1042/BST20160018CrossRefPubMedGoogle Scholar
  4. 4.
    Zheng J, Trudeau MC (2015) Handbook of Ion channels, 1st edn. CRC Press, Boca Raton, FL.  https://doi.org/10.1201/b18027CrossRefGoogle Scholar
  5. 5.
    Ahern CA, Payandeh J, Bosmans F, Chanda B (2016) The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 147(1):1–24.  https://doi.org/10.1085/jgp.201511492CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77CrossRefGoogle Scholar
  7. 7.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefGoogle Scholar
  8. 8.
    Guan B, Chen X, Zhang H (2013) Two-electrode voltage clamp. In: Gamper N (ed) Ion channels: methods and protocols. Humana Press, Totowa, NJ, pp 79–89.  https://doi.org/10.1007/978-1-62703-351-0_6CrossRefGoogle Scholar
  9. 9.
    Stefani E, Bezanilla F (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol 293:300–318CrossRefGoogle Scholar
  10. 10.
    Rudokas MW, Varga Z, Schubert AR, Asaro AB, Silva JR (2014) The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry. J Vis Exp (85).  https://doi.org/10.3791/51040
  11. 11.
    Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375(2):219–228CrossRefGoogle Scholar
  12. 12.
    Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472.  https://doi.org/10.1146/annurev.ph.46.030184.002323CrossRefPubMedGoogle Scholar
  13. 13.
    Auerbach A, Sachs F (1984) Patch clamp studies of single ionic channels. Annu Rev Biophys Bioeng 13:269–302.  https://doi.org/10.1146/annurev.bb.13.060184.001413CrossRefPubMedGoogle Scholar
  14. 14.
    Islas L (2015) Patch clamping and single-channel analysis. In: Handbook of ion channels. CRC Press, Boca Raton, FL, pp 71–81.  https://doi.org/10.1201/b18027-9CrossRefGoogle Scholar
  15. 15.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100CrossRefGoogle Scholar
  16. 16.
    Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266(3):44–51CrossRefGoogle Scholar
  17. 17.
    Gorostiza P, Isacoff EY (2008) Nanoengineering ion channels for optical control. Physiology (Bethesda) 23:238–247.  https://doi.org/10.1152/physiol.00018.2008CrossRefGoogle Scholar
  18. 18.
    Pless SA, Kim RY, Ahern CA, Kurata HT (2015) Atom-by-atom engineering of voltage-gated ion channels: magnified insights into function and pharmacology. J Physiol 593(12):2627–2634.  https://doi.org/10.1113/jphysiol.2014.287714CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lueck JD, Mackey AL, Infield DT, Galpin JD, Li J, Roux B, Ahern CA (2016) Atomic mutagenesis in ion channels with engineered stoichiometry. Elife 5.  https://doi.org/10.7554/eLife.18976
  20. 20.
    Yuchi Z, Van Petegem F (2016) Ryanodine receptors under the magnifying lens: insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 59(5):209–227.  https://doi.org/10.1016/j.ceca.2016.04.003CrossRefPubMedGoogle Scholar
  21. 21.
    Fujiyoshi Y (2011) Electron crystallography for structural and functional studies of membrane proteins. J Electron Microsc (Tokyo) 60(Suppl 1):S149–S159.  https://doi.org/10.1093/jmicro/dfr033CrossRefGoogle Scholar
  22. 22.
    Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358.  https://doi.org/10.1038/nature10238CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kaplan M, Pinto C, Houben K, Baldus M (2016) Nuclear magnetic resonance (NMR) applied to membrane-protein complexes. Q Rev Biophys 49:e15.  https://doi.org/10.1017/S003358351600010XCrossRefPubMedGoogle Scholar
  24. 24.
    Blasic JR, Worcester DL, Gawrisch K, Gurnev P, Mihailescu M (2015) Pore hydration states of KcsA potassium channels in membranes. J Biol Chem 290(44):26765–26775.  https://doi.org/10.1074/jbc.M115.661819CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kulleperuma K, Smith SM, Morgan D, Musset B, Holyoake J, Chakrabarti N, Cherny VV, DeCoursey TE, Pomes R (2013) Construction and validation of a homology model of the human voltage-gated proton channel hHV1. J Gen Physiol 141(4):445–465.  https://doi.org/10.1085/jgp.201210856CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Randolph AL, Mokrab Y, Bennett AL, Sansom MS, Ramsey IS (2016) Proton currents constrain structural models of voltage sensor activation. Elife 5.  https://doi.org/10.7554/eLife.18017
  27. 27.
    Blunck R (2015) Investigation of ion channel structure using fluorescence spectroscopy. In: Handbook of ion channels. CRC Press, Boca Raton, FL, pp 113–133.  https://doi.org/10.1201/b18027-12CrossRefGoogle Scholar
  28. 28.
    Taraska JW, Zagotta WN (2010) Fluorescence applications in molecular neurobiology. Neuron 66(2):170–189.  https://doi.org/10.1016/j.neuron.2010.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271(5246):213–216CrossRefGoogle Scholar
  30. 30.
    Gandhi CS, Olcese R (2008) The voltage-clamp fluorometry technique. Methods Mol Biol 491:213–231.  https://doi.org/10.1007/978-1-59745-526-8_17CrossRefPubMedGoogle Scholar
  31. 31.
    Zheng J, Zagotta WN (2003) Patch-clamp fluorometry recording of conformational rearrangements of ion channels. Sci STKE 2003(176):PL7.  https://doi.org/10.1126/stke.2003.176.pl7CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng J, Zagotta WN (2000) Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 28(2):369–374CrossRefGoogle Scholar
  33. 33.
    Kusch J, Zifarelli G (2014) Patch-clamp fluorometry: electrophysiology meets fluorescence. Biophys J 106(6):1250–1257.  https://doi.org/10.1016/j.bpj.2014.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Taraska JW, Zagotta WN (2007) Cyclic nucleotide-regulated ion channels: spotlight on symmetry. Structure 15(9):1023–1024.  https://doi.org/10.1016/j.str.2007.08.004CrossRefPubMedGoogle Scholar
  35. 35.
    Wang S, Lee SJ, Heyman S, Enkvetchakul D, Nichols CG (2012) Structural rearrangements underlying ligand-gating in Kir channels. Nat Commun 3:617.  https://doi.org/10.1038/ncomms1625CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Islas LD, Zagotta WN (2006) Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence. J Gen Physiol 128(3):337–346.  https://doi.org/10.1085/jgp.200609556CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liu C, Xie C, Grant K, Su Z, Gao W, Liu Q, Zhou L (2016) Patch-clamp fluorometry-based channel counting to determine HCN channel conductance. J Gen Physiol 148(1):65–76.  https://doi.org/10.1085/jgp.201511559CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    De-la-Rosa V, Suárez-Delgado E, Rangel-Yescas GE, Islas LD (2016) Currents through Hv1 channels deplete protons in their vicinity. J Gen Physiol 147(2):127–136CrossRefGoogle Scholar
  39. 39.
    Miranda P, Giraldez T, Holmgren M (2016) Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring. Proc Natl Acad Sci U S A 113(49):14055–14060.  https://doi.org/10.1073/pnas.1611415113CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Trudeau MC, Zagotta WN (2003) Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 278(21):18705–18708.  https://doi.org/10.1074/jbc.R300001200CrossRefPubMedGoogle Scholar
  41. 41.
    Biskup C, Kusch J, Schulz E, Nache V, Schwede F, Lehmann F, Hagen V, Benndorf K (2007) Relating ligand binding to activation gating in CNGA2 channels. Nature 446(7134):440–443.  https://doi.org/10.1038/nature05596CrossRefPubMedGoogle Scholar
  42. 42.
    Aman TK, Gordon SE, Zagotta WN (2016) Regulation of CNGA1 channel gating by interactions with the membrane. J Biol Chem 291(19):9939–9947.  https://doi.org/10.1074/jbc.M116.723932CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zheng J (2006) Patch fluorometry: shedding new light on ion channels. Physiology (Bethesda) 21:6–12.  https://doi.org/10.1152/physiol.00041.2005CrossRefGoogle Scholar
  44. 44.
    Geibel S, Kaplan JH, Bamberg E, Friedrich T (2003) Conformational dynamics of the Na+/K+-ATPase probed by voltage clamp fluorometry. Proc Natl Acad Sci U S A 100(3):964–969.  https://doi.org/10.1073/pnas.0337336100CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stuurman N, Amdodaj N, Vale R (2007) Micro-manager: open source software for light microscope imaging. Microscopy Today 15(3):42–43CrossRefGoogle Scholar
  46. 46.
    Molleman A (2003) Requirements. In: Patch clamping. John Wiley & Sons, Ltd., Chichester, pp 43–93.  https://doi.org/10.1002/0470856521.ch3CrossRefGoogle Scholar
  47. 47.
    Goldin AL (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 207:266–279CrossRefGoogle Scholar
  48. 48.
    Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Methods Enzymol 207:225–265CrossRefGoogle Scholar
  49. 49.
    Brown AL, Johnson BE, Goodman MB (2008) Patch clamp recording of ion channels expressed in Xenopus oocytes. J Vis Exp (20):936.  https://doi.org/10.3791/936
  50. 50.
    Holmgren M, Liu Y, Xu Y, Yellen G (1996) On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35(7):797–804CrossRefGoogle Scholar
  51. 51.
    Lundblad RL (2004) Techniques in protein modification, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  52. 52.
    Taraska JW, Puljung MC, Olivier NB, Flynn GE, Zagotta WN (2009) Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat Methods 6(7):532–537CrossRefGoogle Scholar
  53. 53.
    Taraska JW, Zagotta WN (2007) Structural dynamics in the gating ring of cyclic nucleotide-gated ion channels. Nat Struct Mol Biol 14(9):854–860.  https://doi.org/10.1038/nsmb1281CrossRefPubMedGoogle Scholar
  54. 54.
    Loots E, Isacoff EY (2000) Molecular coupling of S4 to a K(+) channel’s slow inactivation gate. J Gen Physiol 116(5):623–636CrossRefGoogle Scholar
  55. 55.
    Puljung MC, Zagotta WN (2011) Labeling of specific cysteines in proteins using reversible metal protection. Biophys J 100(10):2513–2521.  https://doi.org/10.1016/j.bpj.2011.03.063CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kusch J, Biskup C, Thon S, Schulz E, Nache V, Zimmer T, Schwede F, Benndorf K (2010) Interdependence of receptor activation and ligand binding in HCN2 pacemaker channels. Neuron 67(1):75–85.  https://doi.org/10.1016/j.neuron.2010.05.022CrossRefPubMedGoogle Scholar
  57. 57.
    Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR (2005) Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436(7052):848–851.  https://doi.org/10.1038/nature03819CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444.  https://doi.org/10.1146/annurev.biochem.052308.105824CrossRefPubMedGoogle Scholar
  59. 59.
    Serfling R, Coin I (2016) Incorporation of unnatural amino acids into proteins expressed in mammalian cells. Methods Enzymol 580:89–107.  https://doi.org/10.1016/bs.mie.2016.05.003CrossRefPubMedGoogle Scholar
  60. 60.
    Lee HS, Guo J, Lemke EA, Dimla RD, Schultz PG (2009) Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J Am Chem Soc 131(36):12921–12923.  https://doi.org/10.1021/ja904896sCrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chatterjee A, Guo J, Lee HS, Schultz PG (2013) A genetically encoded fluorescent probe in mammalian cells. J Am Chem Soc 135(34):12540–12543.  https://doi.org/10.1021/ja4059553CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Segev A, Garcia-Oscos F, Kourrich S (2016) Whole-cell patch-clamp recordings in brain slices. J Vis Exp (112).  https://doi.org/10.3791/54024
  63. 63.
    Li S, Deng Z, Wei L, Liang L, Ai W, Shou X, Chen X (2011) Reduction of large-conductance Ca2(+) -activated K(+) channel with compensatory increase of nitric oxide in insulin resistant rats. Diabetes Metab Res Rev 27(5):461–469.  https://doi.org/10.1002/dmrr.1196CrossRefPubMedGoogle Scholar
  64. 64.
    Cherny VV, Murphy R, Sokolov V, Levis RA, DeCoursey TE (2003) Properties of single voltage-gated proton channels in human eosinophils estimated by noise analysis and by direct measurement. J Gen Physiol 121(6):615–628.  https://doi.org/10.1085/jgp.200308813CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gandini MA, Sandoval A, Felix R (2014) Whole-cell patch-clamp recording of recombinant voltage-sensitive Ca2+ channels heterologously expressed in HEK-293 cells. Cold Spring Harb Protoc 2014(4):396–401.  https://doi.org/10.1101/pdb.prot073213CrossRefPubMedGoogle Scholar
  66. 66.
    Sontheimer H, Olsen ML (2007) Whole-cell patch-clamp recordings. In: Walz W (ed) Patch-clamp analysis: advanced techniques. Humana Press, Totowa, NJ, pp 35–68.  https://doi.org/10.1007/978-1-59745-492-6_2CrossRefGoogle Scholar
  67. 67.
    Cahalan M, Neher E (1992) Patch clamp techniques: an overview. Methods Enzymol 207:3–14CrossRefGoogle Scholar
  68. 68.
    Molleman A (2003) Basic theoretical principles. In: Patch clamping. John Wiley & Sons, Ltd., Chichester, pp 5–42.  https://doi.org/10.1002/0470856521.ch2CrossRefGoogle Scholar
  69. 69.
    Kobrinsky E, Stevens L, Kazmi Y, Wray D, Soldatov NM (2006) Molecular rearrangements of the Kv2.1 potassium channel termini associated with voltage gating. J Biol Chem 281(28):19233–19240.  https://doi.org/10.1074/jbc.M601231200CrossRefPubMedGoogle Scholar
  70. 70.
    Yang F, Cui Y, Wang K, Zheng J (2010) Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci U S A 107(15):7083–7088.  https://doi.org/10.1073/pnas.1000357107CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kobrinsky E, Tiwari S, Maltsev VA, Harry JB, Lakatta E, Abernethy DR, Soldatov NM (2005) Differential role of the alpha1C subunit tails in regulation of the Cav1.2 channel by membrane potential, beta subunits, and Ca2+ ions. J Biol Chem 280(13):12474–12485.  https://doi.org/10.1074/jbc.M412140200CrossRefPubMedGoogle Scholar
  72. 72.
    Fisher JA, Girdler G, Khakh BS (2004) Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions. J Neurosci 24(46):10475–10487.  https://doi.org/10.1523/JNEUROSCI.3250-04.2004CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36(1):59–74.  https://doi.org/10.1099/0022-1317-36-1-59CrossRefPubMedGoogle Scholar
  74. 74.
    Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785CrossRefGoogle Scholar
  75. 75.
    Han Z, Jin L, Chen F, Loturco JJ, Cohen LB, Bondar A, Lazar J, Pieribone VA (2014) Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. PLoS One 9(11):e113873CrossRefGoogle Scholar
  76. 76.
    Heuser J (2000) The production of ‘cell cortices’ for light and electron microscopy. Traffic 1(7):545–552.  https://doi.org/10.1034/j.1600-0854.2000.010704.xCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Esteban Suárez-Delgado
    • 1
  • León D. Islas
    • 1
  1. 1.Facultad de Medicina, Departamento de FisiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations