Advertisement

Using Zebrafish to Study and Visualize Barriers of the CNS

  • Robyn Anne UmansEmail author
Protocol
Part of the Neuromethods book series (NM, volume 152)

Abstract

Blood–central nervous system (CNS) barriers are structures critical for maintaining neural homeostasis. While these barriers preserve a healthy brain environment, their physical and chemical properties create obstacles for efficacious CNS drug delivery and are compromised in various CNS disease states. Even though the blood–brain barrier (BBB) was discovered over a century ago, molecular mechanisms and interacting cell types necessary for BBB function and integrity have only recently become uncovered. Furthermore, the field of BBB biology could benefit from utilizing an innovative model system to dissect elements crucial for barrier properties. Uncovered molecular pathways could bring to light novel CNS drug delivery targets and prevent CNS disease progression. There has been a surge of zebrafish use in biomedical research over the past few decades, which has provided researchers a valuable animal model system to genetically and chemically study these barrier structures deep within the brain parenchyma. Here, I describe genetic, chemical, and histology methods for utilizing zebrafish in studying blood–CNS barriers such as the BBB and how these zebrafish assays could be used to exploit the unanswered questions that remain in CNS barrier biology.

Key words

Zebrafish Blood–brain barrier Central nervous system Genetics Microscopy Genetic screen Chemical screen 

References

  1. 1.
    Abbott NJ, Friedman A (2012) Overview and introduction: the blood–brain barrier in health and disease. Epilepsia 53(06):1–6.  https://doi.org/10.1111/j.1528-1167.2012.03696.xCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201.  https://doi.org/10.1016/j.neuron.2008.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243.  https://doi.org/10.1038/nature09613CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnár Z, O’Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182. http://www.nature.com/nrn/journal/v12/n3/suppinfo/nrn2995_S1.htmlCrossRefGoogle Scholar
  5. 5.
    Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562–566.  https://doi.org/10.1038/nature09513CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509(7501):507–511. http://www.nature.com/nature/journal/v509/n7501/abs/nature13324.html#supplementary-information.  https://doi.org/10.1038/nature13324CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E (2008) Wnt/β-catenin signaling controls development of the blood–brain barrier. J Cell Biol 183(3):409–417.  https://doi.org/10.1083/jcb.200806024CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Abbott NJ (2002) Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 200(6):629–638.  https://doi.org/10.1046/j.1469-7580.2002.00064.xCrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9):891–907.  https://doi.org/10.1101/gad.188326.112CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee S-W, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim Y-J, Kim K-W (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9(7):900–906CrossRefGoogle Scholar
  11. 11.
    Lundgaard I, Osório MJ, Kress B, Sanggaard S, Nedergaard M (2014) White matter astrocytes in health and disease. Neuroscience 276:161–173.  https://doi.org/10.1016/j.neuroscience.2013.10.050CrossRefPubMedGoogle Scholar
  12. 12.
    Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14CrossRefGoogle Scholar
  13. 13.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341.  https://doi.org/10.1016/j.ddtec.2004.11.007CrossRefGoogle Scholar
  14. 14.
    Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H (2014) Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells. Nat Commun 5:4196. http://www.nature.com/articles/ncomms5196#supplementary-information.  https://doi.org/10.1038/ncomms5196CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Naik P, Cucullo L (2012) In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci 101(4):1337–1354.  https://doi.org/10.1002/jps.23022CrossRefPubMedGoogle Scholar
  16. 16.
    Cho H, Seo JH, Wong KHK, Terasaki Y, Park J, Bong K, Arai K, Lo EH, Irimia D (2015) Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep 5:15222. http://www.nature.com/articles/srep15222#supplementary-information.  https://doi.org/10.1038/srep15222CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Forster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B (2016) In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 36(5):862–890.  https://doi.org/10.1177/0271678x16630991CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25(1):5–23.  https://doi.org/10.1007/s10571-004-1374-yCrossRefPubMedGoogle Scholar
  19. 19.
    Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. Dev Biol 84(1):183–192CrossRefGoogle Scholar
  20. 20.
    Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. J Cell Biol 161(3):653–660.  https://doi.org/10.1083/jcb.200302070CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485(7399):512–516. http://www.nature.com/nature/journal/v485/n7399/abs/nature11087.html#supplementary-informationCrossRefGoogle Scholar
  22. 22.
    Sohet F, Daneman R (2013) Genetic mouse models to study blood–brain barrier development and function. Fluids Barriers CNS 10:3.  https://doi.org/10.1186/2045-8118-10-3CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klämbt C (2008) Organization and function of the blood–brain barrier in Drosophila. J Neurosci 28(3):587–597.  https://doi.org/10.1523/jneurosci.4367-07.2008CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jeong J-Y, Kwon H-B, Ahn J-C, Kang D, Kwon S-H, Park JA, Kim K-W (2008) Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull 75(5):619–628.  https://doi.org/10.1016/j.brainresbull.2007.10.043CrossRefPubMedGoogle Scholar
  25. 25.
    Xie J, Farage E, Sugimoto M, Anand-Apte B (2010) A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev Biol 10(1):76.  https://doi.org/10.1186/1471-213x-10-76CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fleming A, Diekmann H, Goldsmith P (2013) Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. PLoS One 8(10):e77548.  https://doi.org/10.1371/journal.pone.0077548CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Umans RA, Taylor MR (2012) Zebrafish as a model to study drug transporters at the blood–brain barrier. Clin Pharmacol Ther 92(5):567–570.  https://doi.org/10.1038/clpt.2012.168CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tam Stephen J, Richmond David L, Kaminker Joshua S, Modrusan Z, Martin-McNulty B, Cao Tim C, Weimer Robby M, Carano Richard AD, van Bruggen N, Watts Ryan J (2012) Death receptors DR6 and TROY regulate brain vascular development. Dev Cell 22(2):403–417.  https://doi.org/10.1016/j.devcel.2011.11.018CrossRefPubMedGoogle Scholar
  29. 29.
    Grunwald DJ (2002) Headwaters of the zebrafish — emergence of a new model vertebrate. Nat Rev Gen 3(9):717–724.  https://doi.org/10.1038/nrg892CrossRefGoogle Scholar
  30. 30.
    Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2(12):956–966CrossRefGoogle Scholar
  31. 31.
    Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367.  https://doi.org/10.1038/nrg2091CrossRefPubMedGoogle Scholar
  32. 32.
    Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotech 29(8):699–700. http://www.nature.com/nbt/journal/v29/n8/abs/nbt.1939.html#supplementary-informationCrossRefGoogle Scholar
  33. 33.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229.  https://doi.org/10.1038/nbt.2501CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferre F, Bourque C, Burke CJ, Turner L, Uong A, Johnson LA, Beroukhim R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA, Zon LI (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471(7339):513–517.  https://doi.org/10.1038/nature09806CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106(2):641–646.  https://doi.org/10.1073/pnas.0805165106CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang X, Kopinke D, Lin J, McPherson Adam D, Duncan Robert N, Otsuna H, Moro E, Hoshijima K, Grunwald David J, Argenton F, Chien C-B, Murtaugh LC, Dorsky Richard I (2012) Wnt signaling regulates postembryonic hypothalamic progenitor differentiation. Dev Cell 23(3):624–636.  https://doi.org/10.1016/j.devcel.2012.07.012CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4(1):33–41. http://www.nature.com/nchembio/journal/v4/n1/suppinfo/nchembio.2007.54_S1.htmlCrossRefGoogle Scholar
  38. 38.
    Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97(24):12965–12969CrossRefGoogle Scholar
  39. 39.
    Stern HM, Murphey RD, Shepard JL, Amatruda JF, Straub CT, Pfaff KL, Weber G, Tallarico JA, King RW, Zon LI (2005) Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat Chem Biol 1(7):366–370CrossRefGoogle Scholar
  40. 40.
    Wang C, Tao W, Wang Y, Bikow J, Lu B, Keating A, Verma S, Parker TG, Han R, Wen XY (2010) Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol 58(3):418–426.  https://doi.org/10.1016/j.eururo.2010.05.024CrossRefPubMedGoogle Scholar
  41. 41.
    Ridges S, Heaton WL, Joshi D, Choi H, Eiring A, Batchelor L, Choudhry P, Manos EJ, Sofla H, Sanati A, Welborn S, Agarwal A, Spangrude GJ, Miles RR, Cox JE, Frazer JK, Deininger M, Balan K, Sigman M, Müschen M, Perova T, Johnson R, Montpellier B, Guidos CJ, Jones DA, Trede NS (2012) Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119(24):5621CrossRefGoogle Scholar
  42. 42.
    Sachidanandan C, Yeh JR, Peterson QP, Peterson RT (2008) Identification of a novel retinoid by small molecule screening with zebrafish embryos. PLoS One 3(4):e1947.  https://doi.org/10.1371/journal.pone.0001947CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ren B, Deng Y, Mukhopadhyay A, Lanahan AA, Zhuang ZW, Moodie KL, Mulligan-Kehoe MJ, Byzova TV, Peterson RT, Simons M (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Invest 120(4):1217–1228.  https://doi.org/10.1172/JCI39837CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230(2):278–301.  https://doi.org/10.1006/dbio.2000.9995CrossRefPubMedGoogle Scholar
  45. 45.
    Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, Logsdon D, Hsiao E, Stein EV, Cuttitta F, Haines DC, Nagashima K, Tessarollo L, St Croix B (2011) GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci U S A 108(14):5759–5764.  https://doi.org/10.1073/pnas.1017192108CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13(9):1055–1066CrossRefGoogle Scholar
  47. 47.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439.  https://doi.org/10.1038/380435a0CrossRefPubMedGoogle Scholar
  48. 48.
    Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci U S A 103(17):6554–6559.  https://doi.org/10.1073/pnas.0506886103CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674.  https://doi.org/10.1038/386671a0CrossRefPubMedGoogle Scholar
  50. 50.
    Umans RA, Henson HE, Mu F, Parupalli C, Ju B, Peters JL, Lanham KA, Plavicki JS, Taylor MR (2017) CNS angiogenesis and barriergenesis occur simultaneously. Dev Biol 425:101.  https://doi.org/10.1016/j.ydbio.2017.03.017CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dermietzel R, Krause D, Kremer M, Wang C, Stevenson B (1992) Pattern of glucose transporter (Glut 1) expression in embryonic brains is related to maturation of blood-brain barrier tightness. Dev Dyn 193(2):152–163.  https://doi.org/10.1002/aja.1001930207CrossRefPubMedGoogle Scholar
  52. 52.
    Bauer H, Sonnleitner U, Lametschwandtner A, Steiner M, Adam H, Bauer HC (1995) Ontogenic expression of the erythroid-type glucose transporter (Glut 1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Brain Res Dev Brain Res 86(1–2):317–325CrossRefGoogle Scholar
  53. 53.
    Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, Cao TC, Weimer RM, Carano RA, van Bruggen N, Watts RJ (2012) Death receptors DR6 and TROY regulate brain vascular development. Dev Cell 22(2):403–417.  https://doi.org/10.1016/j.devcel.2011.11.018CrossRefPubMedGoogle Scholar
  54. 54.
    Wang Y, Pan L, Moens CB, Appel B (2014) Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141(2):307–317.  https://doi.org/10.1242/dev.096107CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bernardos RL, Raymond PA (2006) GFAP transgenic zebrafish. Gene Exp Patterns 6(8):1007–1013.  https://doi.org/10.1016/j.modgep.2006.04.006CrossRefGoogle Scholar
  56. 56.
    Dziegielewska KM, Ek J, Habgood MD, Saunders NR (2001) Development of the choroid plexus. Microsc Res Tech 52(1):5–20.  https://doi.org/10.1002/1097-0029(20010101)52:1<5::AID-JEMT3>3.0.CO;2-JCrossRefPubMedGoogle Scholar
  57. 57.
    Zheng PP, Romme E, van der Spek PJ, Dirven CM, Willemsen R, Kros JM (2010) Glut1/SLC2A1 is crucial for the development of the blood-brain barrier in vivo. Ann Neurol 68(6):835–844.  https://doi.org/10.1002/ana.22318CrossRefPubMedGoogle Scholar
  58. 58.
    Fischer S, Klüver N, Burkhardt-Medicke K, Pietsch M, Schmidt A-M, Wellner P, Schirmer K, Luckenbach T (2013) Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol 11(1):69.  https://doi.org/10.1186/1741-7007-11-69CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Daneman R, Rescigno M (2009) The gut immune barrier and the blood-brain barrier: are they so different? Immunity 31(5):722–735.  https://doi.org/10.1016/j.immuni.2009.09.012CrossRefPubMedGoogle Scholar
  60. 60.
    Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318CrossRefGoogle Scholar
  61. 61.
    Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21(18):2258–2270.  https://doi.org/10.1101/gad.1583307CrossRefPubMedGoogle Scholar
  62. 62.
    Schlaeger TM, Qin Y, Fujiwara Y, Magram J, Sato TN (1995) Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 121(4):1089–1098PubMedGoogle Scholar
  63. 63.
    Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome 11(7):478–483CrossRefGoogle Scholar
  64. 64.
    de Bruijn E, Cuppen E, Feitsma H (2009) Highly efficient ENU mutagenesis in zebrafish. In: Lieschke GJ, Oates AC, Kawakami K (eds) Zebrafish: methods and protocols. Humana Press, Totowa, NJ, pp 3–12.  https://doi.org/10.1007/978-1-60327-977-2_1CrossRefGoogle Scholar
  65. 65.
    White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189.  https://doi.org/10.1016/j.stem.2007.11.002CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Solnica-Krezel L, Schier AF, Driever W (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136(4):1401–1420PubMedPubMedCentralGoogle Scholar
  67. 67.
    Salinger AP, Justice MJ (2008) Mouse mutagenesis using N-ethyl-N-nitrosourea (ENU). CSH Protoc 2008:pdb-rot4985.  https://doi.org/10.1101/pdb.prot4985CrossRefGoogle Scholar
  68. 68.
    de Bruijn E, Cuppen E, Feitsma H (2009) Highly efficient ENU mutagenesis in zebrafish. In: Lieschke GJ, Oates AC, Kawakami K (eds) Zebrafish: methods and protocols, Methods in Molecular Biology, vol 546. Humana Press, New York, pp 1–12CrossRefGoogle Scholar
  69. 69.
    Peterson RT, Fishman MC (2011) Designing zebrafish chemical screens. Methods Cell Biol 105:525–541.  https://doi.org/10.1016/B978-0-12-381320-6.00023-0CrossRefPubMedGoogle Scholar
  70. 70.
    Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM (2008) Barriers in the brain: a renaissance? Trends Neurosci 31(6):279–286.  https://doi.org/10.1016/j.tins.2008.03.003CrossRefPubMedGoogle Scholar
  71. 71.
    Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53.  https://doi.org/10.1038/nrn1824CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334(6063):1727–1731.  https://doi.org/10.1126/science.1206936CrossRefPubMedGoogle Scholar
  73. 73.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561.  https://doi.org/10.1038/nature09522CrossRefPubMedGoogle Scholar
  74. 74.
    Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322(5905):1247–1250.  https://doi.org/10.1126/science.1164594CrossRefPubMedGoogle Scholar
  75. 75.
    Bohnsack BL, Gallina D, Kahana A (2011) Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling. PLoS One 6(8):e22991.  https://doi.org/10.1371/journal.pone.0022991CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rembold M, Lahiri K, Foulkes NS, Wittbrodt J (2006) Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1(3):1133–1139. http://www.nature.com/nprot/journal/v1/n3/suppinfo/nprot.2006.165_S1.htmlCrossRefGoogle Scholar
  77. 77.
    Woodfin A, Voisin M-B, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27(12):2514–2523.  https://doi.org/10.1161/atvbaha.107.151456CrossRefPubMedGoogle Scholar
  78. 78.
    Cornford EM, Hyman S, Swartz BE (1994) The human brain GLUT1 glucose transporter: ultrastructural localization to the blood—brain barrier endothelia. J Cereb Blood Flow Metab 14(1):106–112.  https://doi.org/10.1038/jcbfm.1994.15CrossRefPubMedGoogle Scholar
  79. 79.
    Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smit JJM, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JMJM, Fibbe WE, Borst P (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A 94(8):4028–4033CrossRefGoogle Scholar
  80. 80.
    Eisenblätter T, Hüwel S, Galla H-J (2003) Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood–brain barrier. Brain Res 971(2):221–231.  https://doi.org/10.1016/S0006-8993(03)02401-6CrossRefPubMedGoogle Scholar
  81. 81.
    Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173CrossRefGoogle Scholar
  82. 82.
    Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, Blumcke I (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 44(10):1167–1171CrossRefGoogle Scholar
  83. 83.
    Nicchia GP, Nico B, Camassa LMA, Mola MG, Loh N, Dermietzel R, Spray DC, Svelto M, Frigeri A (2004) The role of aquaporin-4 in the blood–brain barrier development and integrity: studies in animal and cell culture models. Neuroscience 129(4):935–944.  https://doi.org/10.1016/j.neuroscience.2004.07.055CrossRefPubMedGoogle Scholar
  84. 84.
    Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–14CrossRefGoogle Scholar
  85. 85.
    Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215.  https://doi.org/10.1016/j.devcel.2011.07.001CrossRefPubMedGoogle Scholar
  86. 86.
    Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32–32.  https://doi.org/10.1186/1750-1326-5-32CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hellstrom M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047PubMedGoogle Scholar
  88. 88.
    Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222(2):218–227.  https://doi.org/10.1002/dvdy.1200CrossRefPubMedGoogle Scholar
  89. 89.
    Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV (2011) Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem 119(3):507–520.  https://doi.org/10.1111/j.1471-4159.2011.07434.xCrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mayer F, Mayer N, Chinn L, Pinsonneault RL, Kroetz D, Bainton RJ (2009) Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila. J Neurosci 29(11):3538–3550.  https://doi.org/10.1523/jneurosci.5564-08.2009CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.The Fralin Biomedical Research Institute at VTCRoanokeUSA

Personalised recommendations