Application of a cybLuc Aminoluciferin for Deep Tissue Bioluminescence Imaging in Rodent Models

  • Xiang Li
  • Minyong LiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2081)


Bioluminescent imaging (BLI) technology has been extensively applied due to various advantages such as noninvasiveness, high sensitivity and selectivity, excellent biocompatibility and real-time visualization and monitoring. The firefly luciferase (Fluc)/luciferin system, one of the principal bioluminescent systems, has been developed as a sensor for imaging biological processes. However, a limited number of Fluc substrates hamper the further application of firefly luciferase/luciferin systems for biomedical purposes. Here we describe an approach to synthesize a series of novel luciferin substrates (cyaLucs) that produced elevated bioluminescent signals in vitro. Furthermore, we demonstrate the high efficiency of N-cyclobutylaminoluciferin (cybLuc) with high light emission and long duration in deep tissue imaging by diagnosis of cerebral tumors in vivo in a rodent model.

Key words

cybLuc aminoluciferin derivative Bioluminescence imaging Deep tissue imaging Rodent model 



This work was supported by grants from the National Natural Science Foundation of China (No. 81673393), the Taishan Scholar Program at Shandong Province, the Qilu/Tang Scholar Program at Shandong University, the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_17R68), the Key Research and Development Project of Shandong Province (No. 2017CXGC1401), and the Fundamental Research Funds of Shandong University (No. 2017GN0030) as well as China Postdoctoral Science Foundation (No. 2018 M640640).


  1. 1.
    Paley MA, Prescher JA (2014) Bioluminescence: a versatile technique for imaging cellular and molecular features. MedChemComm 5(3):255–267CrossRefGoogle Scholar
  2. 2.
    Wu W, Li J, Chen L, Ma Z, Zhang W, Liu Z, Cheng Y, Du L, Li M (2014) Bioluminescent probe for hydrogen peroxide imaging in vitro and in vivo. Anal Chem 86(19):9800–9806CrossRefGoogle Scholar
  3. 3.
    Li J, Chen L, Du L, Li M (2013) Cage the firefly luciferin!–a strategy for developing bioluminescent probes. Chem Soc Rev 42(2):662–676CrossRefGoogle Scholar
  4. 4.
    Negrin RS, Contag CH (2006) In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 6(6):484CrossRefGoogle Scholar
  5. 5.
    White EH, Wörther H, Seliger HH, McElroy WD (1966) Amino analogs of firefly luciferin and biological activity thereof. J Am Chem Soc 88(9):2015–2019CrossRefGoogle Scholar
  6. 6.
    Shinde R, Perkins J, Contag CH (2006) Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. Biochemistry 45(37):11103–11112CrossRefGoogle Scholar
  7. 7.
    Woodroofe CC, Shultz JW, Wood MG, Osterman J, Cali JJ, Daily WJ, Meisenheimer PL, Klaubert DH (2008) N-alkylated 6′-aminoluciferins are bioluminescent substrates for ultra-Glo and QuantiLum luciferase: new potential scaffolds for bioluminescent assays. Biochemistry 47(39):10383–10393CrossRefGoogle Scholar
  8. 8.
    Reddy GR, Thompson WC, Miller SC (2010) Robust light emission from cyclic alkylaminoluciferin substrates for firefly luciferase. J Am Chem Soc 132(39):13586–13587CrossRefGoogle Scholar
  9. 9.
    Conley NR, Dragulescu-Andrasi A, Rao J, Moerner W (2012) A selenium analogue of firefly D-luciferin with red-shifted bioluminescence emission. Angew Chem 124(14):3406–3409CrossRefGoogle Scholar
  10. 10.
    McCutcheon DC, Paley MA, Steinhardt RC, Prescher JA (2012) Expedient synthesis of electronically modified luciferins for bioluminescence imaging. J Am Chem Soc 134(18):7604–7607CrossRefGoogle Scholar
  11. 11.
    Mofford DM, Reddy GR, Miller SC (2014) Aminoluciferins extend firefly luciferase bioluminescence into the near-infrared and can be preferred substrates over D-luciferin. J Am Chem Soc 136(38):13277–13282CrossRefGoogle Scholar
  12. 12.
    Pirrung MC, Biswas G, De Howitt N, Liao J (2014) Synthesis and bioluminescence of difluoroluciferin. Bioorg Med Chem Lett 24(20):4881–4883CrossRefGoogle Scholar
  13. 13.
    Chandran SS, Williams SA, Denmeade SR (2009) Extended-release PEG–luciferin allows for long-term imaging of firefly luciferase activity in vivo. Luminescence 24(1):35–38CrossRefGoogle Scholar
  14. 14.
    Evans MS, Chaurette JP, Adams ST Jr, Reddy GR, Paley MA, Aronin N, Prescher JA, Miller SC (2014) A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 11(4):393CrossRefGoogle Scholar
  15. 15.
    Kuchimaru T, Iwano S, Kiyama M, Mitsumata S, Kadonosono T, Niwa H, Maki S, Kizaka-Kondoh S (2016) A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat Commun 7:11856CrossRefGoogle Scholar
  16. 16.
    Mofford DM, Adams ST Jr, Reddy GKK, Reddy GR, Miller SC (2015) Luciferin amides enable in vivo bioluminescence detection of endogenous fatty acid amide hydrolase activity. J Am Chem Soc 137(27):8684–8687CrossRefGoogle Scholar
  17. 17.
    Mofford DM, Miller SC (2015) Luciferins behave like drugs. ACS Chem Neurosci 6(8):1273–1275CrossRefGoogle Scholar
  18. 18.
    Wu W, Su J, Tang C, Bai H, Ma Z, Zhang T, Yuan Z, Li Z, Zhou W, Zhang H (2017) cybLuc: an effective aminoluciferin derivative for deep bioluminescence imaging. Anal Chem 89(9):4808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of PharmacyShandong UniversityJinanChina

Personalised recommendations