Advertisement

Structural and Functional Characterization of Autophosphorylation in Bacterial Histidine Kinases

  • Laura Miguel-Romero
  • Cristina Mideros-Mora
  • Alberto MarinaEmail author
  • Patricia CasinoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2077)

Abstract

Autophosphorylation of histidine kinases (HK) is the first step for signal transduction in bacterial two-component signalling systems. As HKs dimerize, the His residue is phosphorylated in cis or trans depending on whether the ATP molecule used in the reaction is bound to the same or the neighboring subunit, respectively. The cis or trans autophosphorylation results from an alternative directionality in the connection between helices α1 and α2 in the HK DHp domain, in such a way that α2 could be oriented almost 90° counterclockwise or clockwise with respect to α1. Sequence and length variability of this connection appears to lie behind the different directionality and is implicated in partner recognition with the response regulator (RR), highlighting its importance in signal transduction. Despite this mechanistic difference, HK autophosphorylation appears to be universal, involving conserved residues neighboring the phosphoacceptor His residue. Herein, we describe a simple protocol to determine both autophosphorylation directionality of HKs and the roles of the catalytic residues in these protein kinases.

Key words

Histidine kinases Two-component systems Cis–trans autophosphorylation Signal transduction Heterodimer production and purification X-ray crystallography 

Notes

Acknowledgments

This work was supported by Spanish Government (Ministry of Economy and Competitiveness) grants BIO2016-78571-P to A.M. and BFU2016-78606-P to P.C. P.C. is the recipient of a Ramón y Cajal contract, from the Ministry of Economy and Competitiveness. C.M.-M. is the recipient of a Ph.D. fellowship from the Progama de becas, Secretaría de Educación Superior, Ciencia, Tecnología e Innovación of Ecuador Government (2015-AR2Q9228).

References

  1. 1.
    Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154CrossRefGoogle Scholar
  2. 2.
    Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28CrossRefGoogle Scholar
  3. 3.
    Marina A, Mott C, Auyzenberg A, Hendrickson WA, Waldburger CD (2001) Structural and mutational analysis of the PhoQ histidine kinase catalytic domain. Insight into the reaction mechanism. J Biol Chem 276:41182–41190CrossRefGoogle Scholar
  4. 4.
    Bilwes AM, Quezada CM, Croal LR, Crane BR, Simon MI (2001) Nucleotide binding by the histidine kinase CheA. Nat Struct Biol 8:353–360CrossRefGoogle Scholar
  5. 5.
    Yang Y, Inouye M (1991) Intermolecular complementation between two defective mutant signal-transducing receptors of Escherichia coli. Proc Natl Acad Sci U S A 88:11057–11061CrossRefGoogle Scholar
  6. 6.
    Ninfa EG, Atkinson MR, Kamberov ES, Ninfa AJ (1993) Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. J Bacteriol 175:7024–7032CrossRefGoogle Scholar
  7. 7.
    Casino P, Rubio V, Marina A (2009) Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139:325–336CrossRefGoogle Scholar
  8. 8.
    Casino P, Rubio V, Marina A (2010) The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 20:763–771CrossRefGoogle Scholar
  9. 9.
    Ashenberg O, Keating AE, Laub MT (2013) Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans. J Mol Biol 425:1198–1209CrossRefGoogle Scholar
  10. 10.
    Casino P, Miguel-Romero L, Marina A (2014) Visualizing autophosphorylation in histidine kinases. Nat Commun 5:3258CrossRefGoogle Scholar
  11. 11.
    Cai SJ, Inouye M (2003) Spontaneous subunit exchange and biochemical evidence for trans-autophosphorylation in a dimer of Escherichia coli histidine kinase (EnvZ). J Mol Biol 329:495–503CrossRefGoogle Scholar
  12. 12.
    Mechaly AE, Sassoon N, Betton JM, Alzari PM (2014) Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol 12:e1001776CrossRefGoogle Scholar
  13. 13.
    Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(D1):D257–D260CrossRefGoogle Scholar
  14. 14.
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285CrossRefGoogle Scholar
  15. 15.
    Savitsky P, Bray J, Cooper CD, Marsden BD, Mahajan P, Burgess-Brown NA, Gileadi O (2010) High-throughput production of human proteins for crystallization: the SGC experience. J Struct Biol 172:3–13CrossRefGoogle Scholar
  16. 16.
    McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70(Pt 1):2–20CrossRefGoogle Scholar
  17. 17.
    Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242CrossRefGoogle Scholar
  18. 18.
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221CrossRefGoogle Scholar
  19. 19.
    Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA (2005) Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D Biol Crystallogr 61(Pt 4):449–457CrossRefGoogle Scholar
  20. 20.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132CrossRefGoogle Scholar
  21. 21.
    DeLano WL (2002) The PyMOL molecular graphics system, version 11, Schrodinger LLC. http://www.pymolorg24. Murshudov GN, Vagin

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC)ValenciaSpain
  2. 2.Facultad de Ciencias de la Salud Eugenio EspejoUniversidad Tecnológica EquinoccialQuitoEcuador
  3. 3.CIBER de Enfermedades Raras (CIBERER-ISCIII)MadridSpain
  4. 4.Departament de Bioquímica i Biología MolecularUniversitat de ValènciaBurjassotSpain
  5. 5.Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED)Universitat de ValènciaBurjassotSpain

Personalised recommendations