Advertisement

Determination of Phosphohistidine Stoichiometry in Histidine Kinases by Intact Mass Spectrometry

  • Lauren J. Tomlinson
  • Alice K. M. Clubbs Coldron
  • Patrick A. Eyers
  • Claire E. EyersEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2077)

Abstract

Protein histidine phosphorylation has largely remained unexplored due to the challenges of analyzing relatively unstable phosphohistidine-containing proteins. We describe a procedure for determining the stoichiometry of histidine phosphorylation on the human histidine kinases NME1 and NME2 by intact mass spectrometry under conditions that retain this acid-labile protein modification. By characterizing these two model histidine protein kinases in the absence and presence of a suitable phosphate donor, the stoichiometry of histidine phosphorylation can be determined. The described method can be readily adapted for the analysis of other proteins containing phosphohistidine.

Key words

NME1 NME2 Histidine phosphorylation Intact mass spectrometry 

References

  1. 1.
    Loomis WF, Shaulsky G, Wang N (1997) Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 110:1141–1145PubMedGoogle Scholar
  2. 2.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912CrossRefGoogle Scholar
  3. 3.
    Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):127–130CrossRefGoogle Scholar
  4. 4.
    Adam K, Hunter T (2018) Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Pathol Focus 98:233–247Google Scholar
  5. 5.
    Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7(1):44–51CrossRefGoogle Scholar
  6. 6.
    Klumpp S, Krieglstein J (2009) Reversible phosphorylation of histidine residues in proteins from vertebrates. Sci Signal 2(61):1–4CrossRefGoogle Scholar
  7. 7.
    Fuhs SR et al (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation. Cell 162(1):198–210CrossRefGoogle Scholar
  8. 8.
    Srivastava S et al (2016) Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. eLife 5:pii: e16093CrossRefGoogle Scholar
  9. 9.
    Puttick J, Baker E, Delbaere L (2008) Histidine phosphorylation in biological systems. Biochim Biophys Acta 1784(1):100–105CrossRefGoogle Scholar
  10. 10.
    Attwood PV (2013) P/N bond protein phosphatases. Biochim Biophys Acta 1834:470–478CrossRefGoogle Scholar
  11. 11.
    Attwood PV, Muimo R (2018) The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. Lab Investig 98:283–290CrossRefGoogle Scholar
  12. 12.
    Attwood PV, Wieland T (2015) Nucleoside diphosphate kinase as protein histidine kinase. Naunyn Schmiedeberg's Arch Pharmacol 388(2):153–160CrossRefGoogle Scholar
  13. 13.
    Wu Z, Tiambeng TN, CaI W, Chen B, Lin Z, Zachery R, Gregorich ZR, Ge Y (2018) Impact of phosphorylation on the mass spectrometry quantification of intact phosphoproteins. Anal Chem 90(8):4935–4939CrossRefGoogle Scholar
  14. 14.
    Haydon CE, Eyers PA, Aveline-Wolf LD, Resing KA, Maller JL (2003) Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol Cell Proteomics 2(10):1055–1067CrossRefGoogle Scholar
  15. 15.
    Schweppe RE, Haydon CE, Lewis TS, Resing KA, Ahn NG (2003) The characterization of protein post-translational modifications by mass spectrometry. Acc Chem Res 36(6):453–456CrossRefGoogle Scholar
  16. 16.
    Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ (2009) Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom 20(12):2211–2220CrossRefGoogle Scholar
  17. 17.
    Byrne DP, Vonderach M, Ferries S, Brownridge PJ, Eyers CE, Eyers PA (2016) cAMP-dependent protein kinase (PKA) complexes probed by complementary differential scanning fluorimetry and ion mobility-mass spectrometry. Biochem J 473(19):3159–3175CrossRefGoogle Scholar
  18. 18.
    Ferries S, Perkins S, Brownridge PJ, Campbell A, Eyers PA, Jones AR, Eyers CE (2017) Evaluation of parameters for confident phosphorylation site localization using an orbitrap fusion tribrid mass spectrometer. J Proteome Res 16(9):3448–3459CrossRefGoogle Scholar
  19. 19.
    Attwood PV, Besant PG, Piggott MJ (2011) Focus on phosphoaspartate and phosphoglutamate. Amino Acids 40(4):1035–1051CrossRefGoogle Scholar
  20. 20.
    Besant PG, Attwood PV, Piggott MJ (2009) Focus on phosphoarginine and phospholysine. Curr Protein Pept Sci 10(6):536–550CrossRefGoogle Scholar
  21. 21.
    Hardman G, Perkins S, Ruan Z, Kannan N, Brownridge P, Byrne DP, Eyers PA, Jones AR, Eyers CE (2017) Extensive non-canonical phosphorylation in human cells revealed using strong-anion exchange-mediated phosphoproteomics. bioRxiv 202820.  https://doi.org/10.1101/202820
  22. 22.
    Hardman G, Perkins S, Brownridge PJ, Clarke CJ, Byrne DP, Campbell AE, Anton Kalyuzhnyy A, Myall A, Eyers PA, Jones AR, Eyers CE (2019) Strong anion exchange‐mediated phosphoproteomics reveals extensive human non‐canonical phosphorylation. The EMBO Journal.  https://doi.org/10.15252/embj.2018100847

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Lauren J. Tomlinson
    • 1
  • Alice K. M. Clubbs Coldron
    • 2
  • Patrick A. Eyers
    • 2
  • Claire E. Eyers
    • 1
    Email author
  1. 1.Department of Biochemistry, Centre for Proteome Research, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Biochemistry, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations