Nutritional Models of Type 2 Diabetes Mellitus

  • Beverly Sara MühlhäuslerEmail author
  • Carla Toop
  • Sheridan Gentili
Part of the Methods in Molecular Biology book series (MIMB, volume 2076)


In order to better understand the events that precede and precipitate the onset of type 2 diabetes (T2DM), several nutritional animal models have been developed. These models are generated by manipulating the diet of either the animal itself, or its mother during her pregnancy, and in comparison to traditional genetic and knock out models, have the advantage that they more accurately reflect the etiology of human T2DM. This chapter will discuss some of the most widely used nutritional models of T2DM: Diet-induced obesity (DIO) in adult rodents, and studies of offspring of mothers fed a low-protein, high-fat and/or high-sugar diet during pregnancy and/or lactation. Several common mechanisms have been identified through which these nutritional manipulations can lead to metabolic disease, including pancreatic beta-cell dysfunction, impaired insulin signaling in skeletal muscle, and the excess accumulation of visceral adipose tissue and consequent deposition of nonesterified fatty acids in peripheral tissues. In addition, there is an emerging concept that obesity/poor quality diets result in increased production and release of pro-inflammatory cytokines from adipose tissue leading to a state of chronic low-grade inflammation, and that this is likely to represent an important link between obesity/diet and metabolic dysfunction. The following chapter will discuss the most common nutritional models of T2DM in experimental animals, their application, and relationship to human etiology, and will highlight the important insights these models have provided into the pathogenesis of T2DM.

Key words

Type 2 diabetes Obesity Insulin resistance Animal models Nutrition High-fat diet Programming 



BSM is supported by a Career Development Fellowship from the National Health and Medical Research Council of Australia (NHMRC).


  1. 1.
    Buettner R, Scholmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15:798–808CrossRefGoogle Scholar
  2. 2.
    Portha B, Blondel O, Serradas P, McEvoy R, Giroix MH, Kergoat M, Bailbe D (1989) The rat models of non-insulin dependent diabetes induced by neonatal streptozotocin. Diabete Metab 15:61–75Google Scholar
  3. 3.
    Bray GA (2004) Medical consequences of obesity. J Clin Endocrinol Metab 89:2583–2589CrossRefGoogle Scholar
  4. 4.
    Goralski KB, Sinal CJ (2007) Type 2 diabetes and cardiovascular disease: getting to the fat of the matter. Can J Physiol Pharmacol 85:113–132CrossRefGoogle Scholar
  5. 5.
    Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, de la Bretonne J, Volafova J, Bray GA (2001) Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 50:425–435CrossRefGoogle Scholar
  6. 6.
    Ravussin E, Smith SR (2002) Increased fat uptake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes. Ann N Y Acad Sci 967:363–378CrossRefGoogle Scholar
  7. 7.
    Surwit R, Kuhn C, Cochrane C, McCubbin J, Feinglos M (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167CrossRefGoogle Scholar
  8. 8.
    Black BL, Croom J, Eisen EJ, Petro AE, Edwards CL, Surwit RS (1998) Differential effects of fat and sucrose on body composition in A/J and C57BL/6 mice. Metabolism 47:1354–1359CrossRefGoogle Scholar
  9. 9.
    Roberts CK, Berger JJ, Barnard RJ (2002) Long-term effects of diet on leptin, energy intake, and activity in a model of diet-induced obesity. J Appl Physiol 93:887–893CrossRefGoogle Scholar
  10. 10.
    Bayol SA, Farrington SJ, Stickland NC (2007) A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr 98:843–851CrossRefGoogle Scholar
  11. 11.
    Taylor PD, McConnell J, Khan IY, Holemans K, Lawrence KM, Asare-Anane H, Persaud SJ, Jones PM, Petrie L, Hanson MA, Poston L (2005) Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol 288:R134–R139CrossRefGoogle Scholar
  12. 12.
    Ong ZY, Wanasuria AF, Lin MZP, Hiscock J, Muhlhausler BS (2013) Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system. Appetite 65:189–199CrossRefGoogle Scholar
  13. 13.
    Reichelt AC, Morris MJ, Westbrook RF (2014) Cafeteria diet impairs expression of sensory-specific satiety and stimulus-outcome learning. Front Psychol 5:852PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299CrossRefGoogle Scholar
  15. 15.
    Flanagan AM, Brown JL, Santiago CA, Aad PY, Spicer LJ, Spicer MT (2008) High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. J Nutr Biochem 19:505–513CrossRefGoogle Scholar
  16. 16.
    Barbosa-da-Silva S, da Silva NC, Aguila MB, Mandarim-de-Lacerda CA (2013) Liver damage is not reversed during the lean period in diet-induced weight cycling in mice. Hepatol Res 18:12138Google Scholar
  17. 17.
    Flachs P, Rossmeisl M, Bryhn M, Kopecky J (2009) Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin Sci (Lond) 116:1–16CrossRefGoogle Scholar
  18. 18.
    Muhlhausler BS, Cook-Johnson R, James M, Miljkovic D, Duthoit E, Gibson R (2010) Opposing effects of omega-3 and omega-6 long chain polyunsaturated fatty acids on the expression of lipogenic genes in omental and retroperitoneal adipose depots in the rat. J Nutr MetabGoogle Scholar
  19. 19.
    Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Veck M, Tvrzicka E, Bryhn M, Kopecky J (2004) Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39:1177–1185CrossRefGoogle Scholar
  20. 20.
    Massiera F, Guesnet P, Ailhaud G (2006) The crucial role of dietary n-6 polyunsaturated fatty acids in excessive adipose tissue development: relationship to childhood obesity. Nestle Nutr Workshop Ser Pediatr Program 57:235–242CrossRefGoogle Scholar
  21. 21.
    Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S, Guesnet P, Amri E-Z, Negrel R, Ailhaud G (2003) Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 44:271–279CrossRefGoogle Scholar
  22. 22.
    Semple RK, Chatterjee VK, O’Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116:581–589PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    De Caterina R, Basta G (2001) n-3 Fatty acids and the inflammatory response — biological background. Eur Heart J Suppl 3:D42–D49CrossRefGoogle Scholar
  24. 24.
    Chandalia M, Abate N (2007) Metabolic complications of obesity: inflated or inflamed? J Diabetes Complications 21:128–136CrossRefGoogle Scholar
  25. 25.
    Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB (2010) Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121:1356–1364PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Romaguera D, Norat T, Wark PA, Vergnaud AC, Schulze MB, van Woudenbergh GJ, Drogan D, Amiano P, Molina-Montes E, Sanchez MJ, Balkau B, Barricarte A, Beulens JW, Clavel-Chapelon F, Crispim SP, Fagherazzi G, Franks PW, Grote VA, Huybrechts I, Key TJ, Khaw KT, Nilsson P, Overvad K, Palli D, Panico S, Quiros JR, Rolandsson O, Sacerdote C, Sieri S, Slimani N, Spijkerman AM, Tjonneland A, Tormo MJ, Tumino R, van den Berg SW, Wermeling PR, Zamara-Ros R, Feskens EJ, Langenberg C, Sharp SJ, Foroughi NG, Riboli E, Wareham NJ (2013) Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia 56:1520–1530CrossRefGoogle Scholar
  27. 27.
    Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, Sacks F, Steffen LM, Wylie-Rosett J (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120:1011–1020CrossRefGoogle Scholar
  28. 28.
    Te Morenga L, Mallard S, Mann J (2012) Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 346:e7492CrossRefGoogle Scholar
  29. 29.
    Willett WC, Ludwig DS (2013) Science souring on sugar. BMJ 346:e8077CrossRefGoogle Scholar
  30. 30.
    McLennan W, Podger A (1998) National nutrition survey nutrient intakes and physical measurements 1995. Canberra, ACT, Australian Bureau of StatisticsGoogle Scholar
  31. 31.
    Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46CrossRefGoogle Scholar
  32. 32.
    Douard V, Ferraris RP (2013) The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol 591:401–414CrossRefGoogle Scholar
  33. 33.
    Lustig RH (2013) Fructose: it’s “alcohol without the buzz”. Adv Nutr 4:226–235PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332:145–159CrossRefGoogle Scholar
  35. 35.
    Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA (1996) Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. Am J Physiol 271:R1319–R1326Google Scholar
  36. 36.
    Sheludiakova A, Rooney K, Boakes RA (2012) Metabolic and behavioural effects of sucrose and fructose/glucose drinks in the rat. Eur J Nutr 51:445–454CrossRefGoogle Scholar
  37. 37.
    Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB (2003) Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr 133:127–133CrossRefGoogle Scholar
  38. 38.
    Oliveira LS, Santos DA, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB (2014) The inflammatory profile and liver damage of a sucrose-rich diet in mice. J Nutr Biochem 25:193–200CrossRefGoogle Scholar
  39. 39.
    Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi L (2003) Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am J Hypertens 16:973–978CrossRefGoogle Scholar
  40. 40.
    Kazumi T, Odaka H, Hozumi T, Ishida Y, Amano N, Yoshino G (1997) Effects of dietary fructose or glucose on triglyceride production and lipogenic enzyme activities in the liver of Wistar fatty rats, an animal model of NIDDM. Endocr J 44:239–245CrossRefGoogle Scholar
  41. 41.
    Levin BE, Hogan S, Sullivan AC (1989) Initiation and perpetuation of obesity and obesity resistance in rats. Am J Physiol Regul Integr Comp Physiol 256:R766–R771CrossRefGoogle Scholar
  42. 42.
    Clegg DJ, Benoit SC, Reed JA, Woods SC, Dunn-Meynell A, Levin BE (2005) Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 288:R981–R986CrossRefGoogle Scholar
  43. 43.
    Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 273:R725–R730CrossRefGoogle Scholar
  44. 44.
    Tkacs NC, Levin BE (2004) Obesity-prone rats have preexisting defects in their counter regulatory response to insulin-induced hypoglycemia. Am J Physiol Regul Integr Comp Physiol 287:R1110–R1115CrossRefGoogle Scholar
  45. 45.
    Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P (2003) A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133:1081–1087CrossRefGoogle Scholar
  46. 46.
    Qiu L, List EO, Kopchick JJ (2005) Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol Cell Proteomics 4:1311–1318CrossRefGoogle Scholar
  47. 47.
    Corbett SW, Stern JS, Keesey RE (1986) Energy expenditure in rats with diet-induced obesity. Am J Clin Nutr 44:173–180CrossRefGoogle Scholar
  48. 48.
    Yaqoob P, Sherrington EJ, Jeffery NM, Sanderson P, Harvey DJ, Newsholme EA, Calder PC (1995) Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. Int J Biochem Cell Biol 27:297–310CrossRefGoogle Scholar
  49. 49.
    Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7CrossRefGoogle Scholar
  50. 50.
    Higa TS, Spinola AV, Fonseca-Alaniz MH, Evangelista FSA (2014) Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice. Int J Physiol Pathophysiol Pharmacol 6:47–54PubMedCentralPubMedGoogle Scholar
  51. 51.
    Wassink AM, Olijhoek JK, Visseren FL (2007) The metabolic syndrome: metabolic changes with vascular consequences. Eur J Clin Invest 37:8–17CrossRefGoogle Scholar
  52. 52.
    Shafrir E, Ziv E, Kalman R (2006) Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J 47:212–224CrossRefGoogle Scholar
  53. 53.
    Kaiser N, Nesher R, Donath MY, Fraenkel M, Behar V, Magnan C, Ktorza A, Cerasi E, Leibowitz G (2005) Psammomys obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes 54:S137–S144CrossRefGoogle Scholar
  54. 54.
    Maislos M, Medvedovskv V, Sztarkier I, Yaari A, Sikuler E (2006) Psammomys obesus (sand rat), a new animal model of non-alcoholic fatty liver disease. Diabetes Res Clin Pract 72:1–5CrossRefGoogle Scholar
  55. 55.
    Barker DJP, Bull AR, Osmond C, Simmonds SJ (1990) Fetal and placental size and risk of hypertension in adult life. Br Med J 301:259–262CrossRefGoogle Scholar
  56. 56.
    Hales CN, Barker DJP (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20CrossRefGoogle Scholar
  57. 57.
    McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Ravelli AC, van der Meulen JH, Osmond C, Barker DJ, Bleker OP (1999) Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr 70:811–816CrossRefGoogle Scholar
  59. 59.
    Ravelli ACJ, van der Meulen JHP, Michels RPJ, Osmond C, Barker DJP, Hales CN, Bleker OP (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177CrossRefGoogle Scholar
  60. 60.
    Pettit DJ, Knowler WC (1998) Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care 21:B138–B141CrossRefGoogle Scholar
  61. 61.
    Rkhzay-Jaf J, O’Dowd JF, Stocker CJ (2012) Maternal obesity and the fetal origins of the metabolic syndrome. Curr Cardiovasc Risk Rep 6:487–495PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Muhlhausler BS, Ong ZY (2011) The fetal origins of obesity: early origins of altered food intake. Endocr Metab Immune Disord Drug Targets 11:189–197CrossRefGoogle Scholar
  63. 63.
    Bavdekar A, Yajnik C, Fall C, Bapat S, Pandit A, Deshpande V, Bhave S, Kellingray S, Joglekar C (1999) Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes 48:2422–2429CrossRefGoogle Scholar
  64. 64.
    McMillen IC, Adam CL, Muhlhausler BS (2005) Early origins of obesity: programming the appetite regulatory system. J Physiol 565:9–17PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Hales CN, Barker DJP (2001) The thrifty phenotype hypothesis: type 2 diabetes. Br Med Bull 60:5–20CrossRefGoogle Scholar
  66. 66.
    Holemans K, Verhaeghe J, Dequeker J, Van Assche FA (1996) Insulin sensitivity in adult female rats subjected to malnutrition during the perinatal period. J Soc Gynecol Investig 3:71–77Google Scholar
  67. 67.
    Thompson NM, Norman AM, Donkin SS, Shankar RR, Vickers MH, Miles JL, Breier BH (2007) Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes. Endocrinol Metab Clin North Am 148:2345–2354Google Scholar
  68. 68.
    Ozanne SE (2001) Metabolic programming in animals: type 2 diabetes. Br Med Bull 60:143–152CrossRefGoogle Scholar
  69. 69.
    Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag AA (2005) Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 48:547–552CrossRefGoogle Scholar
  70. 70.
    Hales CN, Desai M, Ozanne SE, Crowther NJ (1996) Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem Soc Trans 24:341–350CrossRefGoogle Scholar
  71. 71.
    Petry CJ, Ozanne SE, Wang CL, Hales CN (1997) Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci (Lond) 93:147–152CrossRefGoogle Scholar
  72. 72.
    Snoeck A, Remacle C, Reusens B, Hoet JJ (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57:107–118CrossRefGoogle Scholar
  73. 73.
    Ozanne SE, Smith GD, Tikerpae J, Hales CN (1996) Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams. Am J Physiol Endocrinol Metab 270:E559–E564CrossRefGoogle Scholar
  74. 74.
    Ozanne SE, Nave BT, Wang CL, Shepherd PR, Prins J, Smith GD (1997) Poor fetal nutrition causes long-term changes in expression of insulin signaling components in adipocytes. Am J Physiol Endocrinol Metab 273:E46–E51CrossRefGoogle Scholar
  75. 75.
    Ozanne SE, Wang CL, Coleman N, Smith GD (1996) Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats. Am J Physiol Endocrinol Metab 271:E1128–E1134CrossRefGoogle Scholar
  76. 76.
    Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL, Hartil K, Petry CJ, Buckley AJ, Mosthaf-Seedorf L (2003) Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 177:235–241CrossRefGoogle Scholar
  77. 77.
    Wadley GD, Siebel AL, Cooney GJ, McConell GK, Wlodek ME, Owens JA (2008) Uteroplacental insufficiency and reducing litter size alters skeletal muscle mitochondrial biogenesis in a sex-specific manner in the adult rat. Am J Physiol Endocrinol Metab 294:E861–E869CrossRefGoogle Scholar
  78. 78.
    Siebel AL, Mibus A, De Blasio MJ, Westcott KT, Morris MJ, Prior L, Owens JA, Wlodek ME (2008) Improved lactational nutrition and postnatal growth ameliorates impairment of glucose tolerance by uteroplacental insufficiency in male rat offspring. Endocrinology 149:3067–3076CrossRefGoogle Scholar
  79. 79.
    Poston L (2011) Intergenerational transmission of insulin resistance and type 2 diabetes. Prog Biophys Mol Biol 106:315–322CrossRefGoogle Scholar
  80. 80.
    Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS (2006) Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab 291:E792–E799CrossRefGoogle Scholar
  81. 81.
    Cerf ME, Muller CJ, Du Toit DF, Louw J, Wolfe-Coote SA (2006) Hyperglycaemia and reduced glucokinase expression in weanling offspring from dams maintained on a high-fat diet. Br J Nutr 95:391–396CrossRefGoogle Scholar
  82. 82.
    Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC (2006) Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 20:1257–1259CrossRefGoogle Scholar
  83. 83.
    Samuelsson A-M, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EHJM, Piersma AH, Ozanne SE, Twinn DF, Remacle C, Rowlerson A, Poston L, Taylor PD (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51:383–392CrossRefGoogle Scholar
  84. 84.
    Muhlhausler BS, Roberts CT, McFarlane JR, Kauter KG, McMillen IC (2002) Fetal leptin is a signal of fat mass independent of maternal nutrition in ewes fed at or above maintenance energy requirements. Biol Reprod 67:493–499CrossRefGoogle Scholar
  85. 85.
    Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC, Bateman AC, Clough GF, Poston L, Hanson MA, McConnell JM, Byrne CD (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50:1796–1808CrossRefGoogle Scholar
  86. 86.
    Srinivasan M, Aalinkeel R, Song F, Mitrani P, Pandya JD, Strutt B, Hill DJ, Patel MS (2006) Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia, and adult-onset obesity and maternal mild food restriction reverses this phenotype. Am J Physiol Endocrinol Metab 290:E129–E134CrossRefGoogle Scholar
  87. 87.
    Cerf ME, Williams K, Chapman CS, Louw J (2007) Compromised beta-cell development and beta-cell dysfunction in weanling offspring from dams maintained on a high-fat diet during gestation. Pancreas 34:347–353CrossRefGoogle Scholar
  88. 88.
    McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, Grove KL (2009) Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 119:323–335PubMedCentralPubMedGoogle Scholar
  89. 89.
    Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P (2006) Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 45:203–236CrossRefGoogle Scholar
  90. 90.
    Muhlhausler BS, Ailhaud GP (2013) Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes 20:56–61CrossRefGoogle Scholar
  91. 91.
    Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C, Mohsen-Kanson T, Amri E-Z, Ailhaud G (2010) A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res 51:2352–2361PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Muhlhausler BS, Gibson RA, Makrides M (2011) The effect of maternal omega-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy and/or lactation on body fat mass in the offspring: a systematic review of animal studies. Prostaglandins Leukot Essent Fatty Acids 85:83–88CrossRefGoogle Scholar
  93. 93.
    Muhlhausler BS, Gibson RA, Makrides M (2010) Effect of long-chain polyunsaturated fatty acid supplementation during pregnancy or lactation on infant and child body composition: a systematic review. Am J Clin Nutr 92:857–863CrossRefGoogle Scholar
  94. 94.
    Muhlhausler BS, Miljkovic D, Fong L, Xian CJ, Duthoit E, Gibson RA (2011) Maternal omega-3 supplementation increases fat mass in male and female rat offspring. Front Genet 2:48PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Chen L, Hu FB, Yeung E, Willett W, Zhang C (2009) Prospective study of pre-gravid sugar-sweetened beverage consumption and the risk of gestational diabetes mellitus. Diabetes Care 32:2236–2241PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Phelan S, Hart C, Phipps M, Abrams B, Schaffner A, Adams A, Wing R (2011) Maternal behaviors during pregnancy impact offspring obesity risk. Exp Diabetes Res 985139:26Google Scholar
  97. 97.
    Toop CR, Muhlhausler BS, O’Dea K, Gentili S (2014) Consumption of sucrose, but not high fructose corn syrup, leads to increased adiposity and dyslipidaemia in the pregnant and lactating rat. J Dev Orig Health Dis 19:1–9Google Scholar
  98. 98.
    Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW, Blumberg B (2013) The obesogenic effect of high fructose exposure during early development. Nat Rev Endocrinol 9:494–500PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Sloboda DM, Li M, Patel R, Clayton ZE, Yap C, Vickers MH (2014) Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J Obesity 203474:23Google Scholar
  100. 100.
    Vickers MH, Clayton ZE, Yap C, Sloboda DM (2011) Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology 152:1378–1387CrossRefGoogle Scholar
  101. 101.
    Mukai Y, Kumazawa M, Sato S (2013) Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein-1c in rats. Endocrine 44:79–86CrossRefGoogle Scholar
  102. 102.
    Rodriguez L, Panadero MI, Roglans N, Otero P, Alvarez-Millan JJ, Laguna JC, Bocos C (2013) Fructose during pregnancy affects maternal and fetal leptin signaling. J Nutr Biochem 24:1709–1716CrossRefGoogle Scholar
  103. 103.
    Samuelsson AM, Matthews PA, Jansen E, Taylor PD, Poston L (2013) Sucrose feeding in mouse pregnancy leads to hypertension, and sex-linked obesity and insulin resistance in female offspring. Front Physiol 4:14PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    Regnault TR, Gentili S, Sarr O, Toop CR, Sloboda DM (2013) Fructose, pregnancy and later life impacts. Clin Exp Pharmacol Physiol 40:824–837CrossRefGoogle Scholar
  105. 105.
    Muhlhausler BS, Duffield JA, McMillen IC (2007) Increased maternal nutrition stimulates peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}), adiponectin and leptin mRNA expression in adipose tissue before birth. Endocrinology 148:878–885CrossRefGoogle Scholar
  106. 106.
    Kasser TR, Martin RJ, Allen CE (1981) Effect of gestational alloxan diabetes and fasting on fetal lipogenesis and lipid deposition in pigs. Biol Neonate 40:105–112CrossRefGoogle Scholar
  107. 107.
    Ezekwe MO, Martin RJ (1980) The effects of maternal alloxan diabetes on body composition, liver enzymes and metabolism and serum metabolites and hormones of fetal pigs. Horm Metab Res 12:136–139CrossRefGoogle Scholar
  108. 108.
    Bayol SA, Simbi BH, Bertrand JA, Stickland NC (2008) Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol 586:3219–3230PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Muhlhausler B, Smith SR (2009) Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol Metab 20:51–57CrossRefGoogle Scholar
  110. 110.
    Padoan A, Rigano S, Ferrazzi E, Beaty BL, Battaglia FC, Galan HL (2004) Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am J Obstet Gynecol 191:1459–1464CrossRefGoogle Scholar
  111. 111.
    Crescenzo R, Samec S, Antic V, Rohner-Jeanrenaud F, Seydoux J, Montani J-P, Dulloo AG (2003) A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth. Acta Paediatr 52:1090–1097Google Scholar
  112. 112.
    Ibanez L, Ong K, Dunger DB, de Zegher F (2006) Early development of aiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab 91:2153–2158CrossRefGoogle Scholar
  113. 113.
    Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C (2000) Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 85:1401–1406Google Scholar
  114. 114.
    De Blasio MJ, Gatford KL, McMillen IC, Robinson JS, Owens JA (2006) Placental restriction of fetal growth increases insulin action, growth and adiposity in the young lamb. Endocrinology 148:1350–1358CrossRefGoogle Scholar
  115. 115.
    De Blasio MJ, Gatford KL, Robinson JS, Owens JA (2007) Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb. Am J Physiol Regul Integr Comp Physiol 292:R875–R886CrossRefGoogle Scholar
  116. 116.
    Ozanne SE (2001) Metabolic programming in animals. Br Med Bull 60:143–152CrossRefGoogle Scholar
  117. 117.
    Kind KL, Clifton PM, Grant PA, Owens PC, Sohlstrom A, Roberts CT, Robinson JS, Owens JA (2003) Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult guinea pig. Am J Physiol Regul Integr Comp Physiol 284:R140–R152CrossRefGoogle Scholar
  118. 118.
    Alexander G (1978) Quantitative development of adipose tissue in foetal sheep. Aust J Biol Sci 31:489–503CrossRefGoogle Scholar
  119. 119.
    Merklin RJ (1973) Growth and distribution of human fetal brown fat. Anat Res 178:637–646CrossRefGoogle Scholar
  120. 120.
    Højlund K, Mogensen M, Sahlin K, Beck-Nielsen H (2008) Mitochondrial dysfunction in type 2 diabetes and obesity. Endocrinol Metab Clin North Am 37:713–731CrossRefGoogle Scholar
  121. 121.
    Howie GJ, Sloboda DM, Reynolds CM, Vickers MH (2013) Timing of maternal exposure to a high fat diet and development of obesity and hyperinsulinemia in male rat offspring: same metabolic phenotype, different developmental pathways? J Nutr Metab 517384:13Google Scholar
  122. 122.
    Palmer AC (2011) Nutritionally mediated programming of the developing immune system. Adv Nutr 2:377–395PubMedCentralCrossRefPubMedGoogle Scholar
  123. 123.
    Zhu MJ, Du M, Nathanielsz PW, Ford SP (2010) Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta 31:387–391CrossRefGoogle Scholar
  124. 124.
    Murabayashi N, Sugiyama T, Zhang L, Kamimoto Y, Umekawa T, Ma N, Sagawa N (2013) Maternal high-fat diets cause insulin resistance through inflammatory changes in fetal adipose tissue. Eur J Obstet Gynecol Reprod Biol 169:39–44CrossRefGoogle Scholar
  125. 125.
    Junien C, Gallou-Kabani C, Vigé A, Gross MS (2005) Nutritional epigenomics: consequences of unbalanced diets on epigenetics processes of programming during lifespan and between generations. Ann Endocrinol (Paris) 66:S19–S28CrossRefGoogle Scholar
  126. 126.
    Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54:1899–1906CrossRefGoogle Scholar
  127. 127.
    Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S (2008) Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond) 32:1373–1379CrossRefGoogle Scholar
  128. 128.
    Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA (2007) Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 97:1036–1046PubMedCentralCrossRefPubMedGoogle Scholar
  129. 129.
    Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97:435–439PubMedCentralCrossRefPubMedGoogle Scholar
  130. 130.
    Tobi EW, Slagboom PE, van Dongen J, Kremer D, Stein AD, Putter H, Heijmans BT, Lumey LH (2012) Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLoS One 7:30CrossRefGoogle Scholar
  131. 131.
    Hanley B, Dijane J, Fewtrell M, Grynberg A, Hummel S, Junien C, Koletzko B, Lewis S, Renz H, Symonds M, Gros M, Harthoorn L, Mace K, Samuels F, van Der Beek EM (2010) Metabolic imprinting, programming and epigenetics – a review of present priorities and future opportunities. Br J Nutr 104:S1–S25CrossRefGoogle Scholar
  132. 132.
    Heerwagen MJR, Miller MR, Barbour LA, Friedman JE (2010) Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol 299:R711–R722Google Scholar
  133. 133.
    Li CC, Maloney CA, Cropley JE, Suter CM (2010) Epigenetic programming by maternal nutrition: shaping future generations. Epigenomics 2:539–549CrossRefGoogle Scholar
  134. 134.
    Li CC, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, Preiss T, Henstridge DC, Cooney GJ, Febbraio MA, Martin DI, Cropley JE, Suter CM (2013) Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics 8:602PubMedCentralCrossRefPubMedGoogle Scholar
  135. 135.
    Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Beverly Sara Mühlhäusler
    • 1
    • 2
    • 3
    Email author
  • Carla Toop
    • 4
  • Sheridan Gentili
    • 4
  1. 1.Food and Nutrition Research Group, Department of Food and Wine Sciences, School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia
  2. 2.FOODplus Research Centre, School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia
  3. 3.CSIROHealth and BiosecurityAdelaideAustralia
  4. 4.Sansom Institute for Health Research, School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations