Advertisement

Sixty Years of Drug Discovery for Type 2 Diabetes: Where Are We Now?

  • John C. ClaphamEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2076)

Abstract

Today, excluding insulin, there are eight classes of anti-diabetic medicines that have been added to the pharmacy since the introduction of metformin in the mid-1950s; the sulfonylureas, biguanides, thiazolidinediones, α-glucosidase inhibitors, meglitinides, incretins, and sodium glucose transport 2 inhibitors. Does the fact that metformin is still first-line treatment suggest that our drug discovery efforts over the past 60 years have not been good enough? Or does it suggest that diabetes is such a complex disorder that no single treatment, other than gastric bypass surgery, can affect true normalization of not only blood sugar but also the underlying pathologies? Our understanding of the disease has most definitely improved which may bring hope for the future in terms of science, but for it to be beneficial, this science has to be translated into better drug treatments for the disease. In this review, I have examined the eight classes of anti-diabetes drugs from a drug discovery perspective.

Key words

Type-2-diabetes Drug discovery Metformin Sulfonylureas Biguanides Thiazolidinediones α-Glucosidase inhibitors DPPIV inhibitors GLP-1 SGLT2 inhibitors Pharmaceutical industry 

References

  1. 1.
    Sugiyama Y (2005) Druggability: selecting optimized drug candidates. Drug Discov Today 10:1577–1579CrossRefGoogle Scholar
  2. 2.
    Allen MJ, Carey AH (2004) Target identification and validation through genetics. Drug Discov Today TARGETS 3:183–190CrossRefGoogle Scholar
  3. 3.
    Sams-Dodd F (2005) Target-based drug discovery: is something wrong? Drug Discov Today 10:139–147CrossRefGoogle Scholar
  4. 4.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schact AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214CrossRefGoogle Scholar
  5. 5.
    Bouzakri K, Koistinen HA, Zierath JR (2005) Molecular mechanisms of skeletal muscle insulin resistance in type 2 diabetes. Curr Diabetes Rev 1:167–174CrossRefGoogle Scholar
  6. 6.
    Gerich JE, Mitrakou A, Kelley D, Mandarino L, Nurjhan N, Reilly J, Jenssen T, Veneman T, Consoli A (1990) Contribution of impaired muscle glucose clearance to reduced postabsorptive systemic glucose clearance in NIDDM. Diabetes 39:211–216CrossRefGoogle Scholar
  7. 7.
    Consoli A (1992) Role of liver in pathophysiology of NIDDM. Diabetes Care 15:430–441CrossRefGoogle Scholar
  8. 8.
    Reaven GM (2014) Pathophysiology of insulin resistance in human disease. Physiol Rev 75:473–486CrossRefGoogle Scholar
  9. 9.
    Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607CrossRefGoogle Scholar
  10. 10.
    Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC (2006) Relationship between b-cell mass and fasting blood glucose concentration in humans. Diabetes Care 29:717–718CrossRefGoogle Scholar
  11. 11.
    The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRefGoogle Scholar
  12. 12.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRefGoogle Scholar
  13. 13.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853CrossRefGoogle Scholar
  14. 14.
    American Diabetes Association (2011) Executive summary: standards of medical care in diabetes - 2011. Diabetes Care 34:S4–S10CrossRefGoogle Scholar
  15. 15.
    Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B (2006) Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care 29:1963–1972CrossRefGoogle Scholar
  17. 17.
    The ADVANCE Collaborative Group (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572CrossRefGoogle Scholar
  18. 18.
    The Action to Control Cardiovascular Risk in Diabetes Study Group (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Herman WH, Dirani RG, O’Neill MC, Kravitz B, Heise A, Bakst A, Freed.M.I. (2005) Reduction in use of healthcare services with combination sulfonylurea and rosiglitazone: findings from the Rosiglitazone Early vs SULfonylurea Titration (RESULT) study. Am J Manag Care 11:273–278Google Scholar
  20. 20.
    Proks P, Reimann F, Green N, Gribble F, Ashcroft F (2002) Sulfonylurea stimulation of insulin secretion. Diabetes 51:S368–S376CrossRefGoogle Scholar
  21. 21.
    Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476CrossRefGoogle Scholar
  22. 22.
    Ashcroft FM (2007) ATP-sensitive K channels and disease: from molecule to malady. Am J Physiol Endocrinol Metab 293:E880–E889CrossRefGoogle Scholar
  23. 23.
    Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017CrossRefGoogle Scholar
  24. 24.
    Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, Ashcroft FM (2009) SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc B 364:257–267CrossRefGoogle Scholar
  25. 25.
    Gribble FM, Tucker SJ, Seino S, Ashcroft FM (1998) Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes 47:1412–1418CrossRefGoogle Scholar
  26. 26.
    Zünkler BJ, Lenzen S, Männer K, Panten U, Trube G (2014) Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic b-cells. Naunyn Schmiedebergs Arch Pharmacol 337:225–230Google Scholar
  27. 27.
    Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford ML (1988) Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol 95:83–94PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Splitter S, Brown FR, Friskey RW, Grindell L, Kinsell LW (1956) Treatment of diabetic patients-observations on the use of carbutamide and tolbutamide. Calif Med 85:285–288PubMedCentralPubMedGoogle Scholar
  29. 29.
    Graal MB, Wolffenbuttel BHR (1999) The use of sulphonylureas in the elderly. Drugs Aging 15:471–481CrossRefGoogle Scholar
  30. 30.
    Malabu UH, Vangaveti VN, Kennedy LR (2014) Disease burden evaluation of fall-related events in the elderly due to hypoglycemia and other diabetic complications: a clinical review. Clin Epidemiol 6:287–294PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Bailey CJ, Day C (2004) Metformin: its botanical background. Pract Diabetes Int 21:115–117CrossRefGoogle Scholar
  32. 32.
    Bailey CJ (1992) Biguanides and NIDDM. Diabetes Care 15:755–772CrossRefGoogle Scholar
  33. 33.
    Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF (1981) Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 12:235–246PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Zhou M, Xia L, Wang J (2007) Metformin transport by a newly cloned proton-stimulated organic cation transporter (Plasma Membrane Monoamine Transporter) expressed in human intestine. Drug Metab Dispos 35:1956–1962PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE (2012) Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 22:820–827PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong J, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM (2011) Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50:81–98CrossRefGoogle Scholar
  37. 37.
    Strack T (2008) Metformin: a review. Drugs Today 44:303–314CrossRefGoogle Scholar
  38. 38.
    Campbell RK, White JR, Saulie BA (1996) Metformin: a new oral biguanide. Clin Ther 18:360–371CrossRefGoogle Scholar
  39. 39.
    DeFronzo RA, Goodman AM (1995) Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 333:541–549PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334:574–579CrossRefGoogle Scholar
  41. 41.
    Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE (1995) Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 333:550–554CrossRefGoogle Scholar
  42. 42.
    Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Klip A, Leiter LA (1990) Cellular mechanism of action of metformin. Diabetes Care 13:696–704CrossRefGoogle Scholar
  44. 44.
    Fryer LGD, Parbu-Patel A, Carling D (2002) The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232CrossRefGoogle Scholar
  45. 45.
    Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes Relat Metab Disord 32:S7–S12CrossRefGoogle Scholar
  46. 46.
    Ruderman N, Prentki M (2004) AMP-kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3:340–351CrossRefGoogle Scholar
  47. 47.
    Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Sakamoto K, Göransson O, Hardie DG, Alessi DR (2004) Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287:E310–E317CrossRefGoogle Scholar
  49. 49.
    Golay A (2007) Metformin and body weight. Int J Obes Relat Metab Disord 32:61–72CrossRefGoogle Scholar
  50. 50.
    Clapham JC, Arch JR (2008) Influencing energy expenditure and substrate utilisation. In: Pharmacotherapy of obesity, Milestones in drug therapy. Birkhäuser, Basel, pp 101–115CrossRefGoogle Scholar
  51. 51.
    Paolisso G, Amato L, Eccellente R, Gambardella A, Tagliamonte MR, Varricchio G, Carella C, Giugliano D, D’onofrio F (1998) Effect of metformin on food intake in obese subjects. Eur J Clin Invest 28:441–446CrossRefGoogle Scholar
  52. 52.
    Bruijstens LA, van Luin M, Buscher-Jungerhans PM, Bosch FH (2008) Reality of severe metformin-induced lactic acidosis in the absence of chronic renal impairment. Neth J Med 66:185–190Google Scholar
  53. 53.
    Carter D, Howlett HCS, Wiernsperger NF, Bailey CJ (2003) Differential effects of metformin on bile salt absorption from the jejunum and ileum. Diabetes Obes Metab 5:120–125CrossRefGoogle Scholar
  54. 54.
    Davidson J, Howlett H (2004) New prolonged-release metformin improves gastrointestinal tolerability. Br J Diabetes Vasc Dis 4:273–277CrossRefGoogle Scholar
  55. 55.
    Mallick S (2004) Metformin induced acute pancreatitis precipitated by renal failure. Postgrad Med J 80:239–240PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Alsubaie S, Almalki MH (2013) Metformin induced acute pancreatitis. Derm Endocrinol 5:317–318CrossRefGoogle Scholar
  57. 57.
    Oprea TI, Bauman JE, Bologa CG, Buranda T, Chigaev A, Edwards BS, Jarvik JW, Gresham HD, Haynes MK, Hjelle B, Hromas R, Hudson L, Mackenzie DA, Muller CY, Reed JC, Simons PC, Smagley Y, Strouse J, Surviladze Z, Thompson T, Ursu O, Waller A, Wandinger-Ness A, Winter SS, Wu Y, Young SM, Larson RS, Willman C, Sklar LA (2011) Drug repurposing from an academic perspective. Drug Discov Today Ther Strat 8:61CrossRefGoogle Scholar
  58. 58.
    Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Transl Med 2:57PubMedCentralPubMedGoogle Scholar
  59. 59.
    Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN (2010) Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol 162:193–212CrossRefGoogle Scholar
  60. 60.
    Scarpello JHB, Howlett HCS (2008) Metformin therapy and clinical uses. Diabetes Vasc Dis Res 5:157–167CrossRefGoogle Scholar
  61. 61.
    Hirst JA, Farmer AJ, Dyar A, Lung TWC, Stevens RJ (2013) Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia 56:973–984PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Rydberg T, Jönsson A, Karlsson MO, Melander A (1997) Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of Pharmacokinetics and Pharmacodynamics. Br J Clin Pharmacol 43:373–381PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716CrossRefGoogle Scholar
  64. 64.
    Rosengren A, Jing X, Eliasson L, Renstrøm E (2008) Why treatment fails in type 2 diabetes. PLoS Med 5:e215PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefGoogle Scholar
  66. 66.
    Karam JH, Sanz N, Salamon E, Nolte MS (1986) Selective unresponsiveness of pancreatic b-cells to acute sulfonylurea stimulation during sulfonylurea therapy in NIDDM. Diabetes 35:1314–1320CrossRefGoogle Scholar
  67. 67.
    Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Jain A, Atreja A, Zimmerman RS (2012) Increase in overall mortality risk in patients with type 2 diabetes receiving glipizide, glyburide or glimepiride monotherapy versus metformin: a retrospective analysis. Diabetes Obes Metab 14:803–809CrossRefGoogle Scholar
  68. 68.
    Rustenbeck I, Wienbergen A, Bleck C, Jörns A (2004) Desensitization of insulin secretion by depolarizing insulin secretagogues. Diabetes 53:S140–S150CrossRefGoogle Scholar
  69. 69.
    Sadikot SM, Mogensen CE (2008) Risk of coronary artery disease associated with initial sulphonylurea treatment of patients with type 2 diabetes: a matched case-control study. Diabetes Res Clin Pract 82:391–395CrossRefGoogle Scholar
  70. 70.
    Lefer DJ, Nichols CG, Coetzee WA (2009) Sulfonylurea receptor 1 subunits of ATP-sensitive potassium channels and myocardial Ischemia/reperfusion Injury. Trends Cardiovasc Med 19:61–67PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Bell DSH (2006) Do sulfonylurea drugs increase the risk of cardiac events? Can Med Assoc J 174:185–186CrossRefGoogle Scholar
  72. 72.
    Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr J 13:17PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Glosli H, Gudbrandsen OA, Mullen AJ, Halvorsen B, Røst TH, Wergedahl H, Prydz H, Aukrust P, Berge RK (2005) Down-regulated expression of PPARa target genes, reduced fatty acid oxidation and altered fatty acid composition in the liver of mice transgenic for hTNFa. Biochim Biophys Acta 1734:235–246CrossRefGoogle Scholar
  74. 74.
    Turner NC, Clapham JC (1998) Insulin resistance, impaired glucose tolerance and non-insulin-dependent diabetes, pathologic mechanisms and treatment: current status and therapeutic possibilities. Prog Drug Res 51:33–94CrossRefGoogle Scholar
  75. 75.
    Henry RR (1997) Thiazolidinediones. Endocrinol Metab Clin 26:553–573CrossRefGoogle Scholar
  76. 76.
    Gale EAM (2006) Troglitazone: the lesson that nobody learned? Diabetologia 49:1–6CrossRefGoogle Scholar
  77. 77.
    Barnett AH (2009) Redefining the role of thiazolidinediones in the management of type 2 diabetes. Vasc Health Risk Manag 5:141–151PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Phillips LS, Grunberger G, Miller E, Patwardhan R, Rappaport EB, Salzman A (2001) Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care 24:308–315CrossRefGoogle Scholar
  79. 79.
    Fonseca V, Rosenstock J, Patwardhan R, Salzman A (2000) Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 283:1695–1702CrossRefGoogle Scholar
  80. 80.
    Poitout V (2004) b-cell lipotoxicity: burning fat into heat? Endocrinology 145:3563–3565CrossRefGoogle Scholar
  81. 81.
    Nolan CJ, Prentki M (2008) The islet b-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 19:285–291CrossRefGoogle Scholar
  82. 82.
    Buckingham RE, Al-Barazanji KA, Toseland CDN, Slaughter M, Connor SC, West A, Bond B, Turner NC, Clapham JC (1998) Peroxisome proliferator-activated receptor-g agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes 47:1326–1334Google Scholar
  83. 83.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471CrossRefGoogle Scholar
  84. 84.
    Singh S, Loke YK, Furberg CD (2007) Thiazolidinediones and heart failure: a teleo-analysis. Diabetes Care 30:2148–2153PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Bloomgarden ZT (2007) The avandia debate. Diabetes Care 30:2401–2408CrossRefGoogle Scholar
  86. 86.
    Misbin RI (2007) Lessons from the avandia controversy: a new paradigm for the development of drugs to treat type 2 diabetes. Diabetes Care 30:3141–3144CrossRefGoogle Scholar
  87. 87.
    Bhatt DL, Chew DP, Grines C, Mukherjee D, Leesar M, Gilchrist IC, Corbelli JC, Blankenship JC, Eres A, Steinhubl S, Tan WA, Resar JR, Al Mahameed A, Abdel-Latif A, Tang HW, Brennan D, McErlean E, Hazen SL, Topol EJ (2007) Peroxisome proliferator-activated receptor g agonists for the prevention of adverse events following percutaneous coronary revascularizationG-results of the PPAR study. Am Heart J 154:137–143CrossRefGoogle Scholar
  88. 88.
    McAfee AT, Koro C, Landon J, Ziyadeh N, Walker AM (2007) Coronary heart disease outcomes in patients receiving antidiabetic agents. Pharmacoepidem Drug Safe 16:711–725CrossRefGoogle Scholar
  89. 89.
    Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Dargie H, Komajda M, Gubb J, Biswas N, Jones NP (2005) Rosiglitazone evaluated for cardiac outcomes and regulation of glycaemia in diabetes (RECORD): study design and protocol. Diabetologia 48:1726–1735CrossRefGoogle Scholar
  90. 90.
    Hillaire-Buys D, Faillie JL, Montastruc JL (2011) Pioglitazone and bladder cancer. Lancet 378:1543–1544CrossRefGoogle Scholar
  91. 91.
    Grey A (2009) Thiazolidinedione-induced skeletal fragility - mechanisms and implications. Diabetes Obes Metab 11:275–284CrossRefGoogle Scholar
  92. 92.
    Oshitari T, Asaumi N, Watanabe M, Kumagai K, Mitamura Y (2008) Severe macular edema induced by pioglitazone in a patient with diabetic retinopathy: a case study. Vasc Health Risk Manag 4:1137–1140PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Liazos E, Broadbent DM, Beare N, Kumar N (2008) Spontaneous resolution of diabetic macular oedema after discontinuation of thiazolidenediones. Diabet Med 25:860–862CrossRefGoogle Scholar
  94. 94.
    Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354CrossRefGoogle Scholar
  95. 95.
    Prentice AM, Jebb SA (1995) Obesity in Britain: gluttony or sloth? Br Med J 311:437–439CrossRefGoogle Scholar
  96. 96.
    Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Hannelore D (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9:e89977PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55:299S–308SCrossRefGoogle Scholar
  98. 98.
    Chiba S (1997) Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci Biotechnol Biochem 61:1233–1239CrossRefGoogle Scholar
  99. 99.
    Göke B, Fuder H, Wieckhorst G, Theiss U, Stridde E, Littke T, Kleist P, Arnold R, Lücker PW (1995) Voglibose (AO-128) is an efficient a-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 56:493–501CrossRefGoogle Scholar
  100. 100.
    Standl E, Schernthaner G, Rybka J, Hanefeld M, Raptis SA, Naditch L (2001) Improved glycaemic control with miglitol in inadequately-controlled type 2 diabetics. Diabetes Res Clin Pract 51:205–213CrossRefGoogle Scholar
  101. 101.
    Hanefeld M, Fischer S, Schulze J, Spengler M, Wargenau M, Schollberg K, Fücker K (1991) Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care 14:732–737CrossRefGoogle Scholar
  102. 102.
    Salman S, Salman F, Satman I, Yilmaz Y, Özer E, Sengül A, Özer H, Demirel HO, Karsidag K, Dinççag N, Yilmaz MT (2001) Comparison of acarbose and gliclazide as first-line agents in patients with type 2 diabetes. Curr Med Res Opin 16:296–306CrossRefGoogle Scholar
  103. 103.
    Wang G, Liu J, Yang N, Gao X, Fan H, Xu Y, Yang W (2014) MARCH2:comparative assessment of therapeutic effects of acarbose and metformin in newly diagnosed type 2 diabetes patients. PLoS One 9:e105698PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    Dabhi AS, Bhatt NR, Shah MJ (2013) Voglibose: an alpha glucosidase inhibitor. J Clin Diagn Res 7:3023–3027PubMedCentralPubMedGoogle Scholar
  105. 105.
    Standl E, Theodorakis MJ, Erbach M, Schnell O, Tuomilehto J (2014) On the potential of acarbose to reduce cardiovascular disease. Cardiovasc Diabetol 13:81PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Ceriello A, Taboga C, Giacomello R, Stel L, Motz E, Pirisi M (1996) Post-meal coagulation activation in diabetes mellitus: the effect of acarbose. Diabetologia 39:469–473CrossRefGoogle Scholar
  107. 107.
    Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H (1999) Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol 34:146–154CrossRefGoogle Scholar
  108. 108.
    Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104:2673–2678CrossRefGoogle Scholar
  109. 109.
    Caumo A, Luzi L (2004) First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am J Physiol Endocrinol Metab 287:E371–E385CrossRefGoogle Scholar
  110. 110.
    Lewis GF, Zinman B, Groenewoud Y, Vranic M, Giacca A (1996) Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in Humans. Diabetes 45:454–462CrossRefGoogle Scholar
  111. 111.
    Calles-Escandon J, Robbins DC (1987) Loss of early phase of insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose. Diabetes 36:1167–1172CrossRefGoogle Scholar
  112. 112.
    Del Prato S, Miccoli R, Penno G (2005) The importance of effective early phase insulin secretion. Br J Diabetes Vasc Dis 5:198–202CrossRefGoogle Scholar
  113. 113.
    Gerich JE (2002) Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes 51:S117–S121CrossRefGoogle Scholar
  114. 114.
    Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW (1988) Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes 37:736–744CrossRefGoogle Scholar
  115. 115.
    Luzio SD, Owens DR, Vora J, Dolben J, Smith H (1991) Intravenous insulin simulates early insulin peak and reduces post-prandial hyperglycaemia/hyperinsulinaemia in type 2 (non-insulin-dependent) diabetes mellitus. Diabetes Res 16:63–67Google Scholar
  116. 116.
    Owens DR, Luzio SD, Ismail I, Bayer T (2000) Increased prandial insulin secretion after administration of a single preprandial oral dose of repaglinide in patients with type 2 diabetes. Diabetes Care 23:518–523CrossRefGoogle Scholar
  117. 117.
    Gromada J, Dissing S, Kofod H, Frøkjær-Jensen J (1995) Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in TC3 cells and rat pancreatic beta cells. Diabetologia 38:1025–1032CrossRefGoogle Scholar
  118. 118.
    Hu S, Wang S, Fanelli B, Bell PA, Dunning BE, Geisse S, Schmitz R, Boettcher BR (2000) Pancreatic b-cell K ATP channel activity and membrane-binding studies with nateglinide: a comparison with sulfonylureas and repaglinide. J Pharmacol Exp Ther 293:444–452Google Scholar
  119. 119.
    Moses RG, Gomis R, Frandsen KB, Schlienger JL, Dedov I (2001) Flexible meal-related dosing with repaglinide facilitates glycemic control in therapy-naive Type 2 diabetes. Diabetes Care 24:11–15CrossRefGoogle Scholar
  120. 120.
    Rosenstock J, Hassman DR, Madder RD, Brazinsky SA, Farrell J, Khutoryansky N, Hale PM (2004) Repaglinide versus nateglinide monotherapy: a randomized, multicenter study. Diabetes Care 27:1265–1270CrossRefGoogle Scholar
  121. 121.
    Hansen AM, Christensen IT, Hansen JB, Carr RD, Ashcroft FM, Wahl P (2002) Differential interactions of nateglinide and repaglinide on the human b-cell sulphonylurea receptor 1. Diabetes 51:2789–2795CrossRefGoogle Scholar
  122. 122.
    Madsbad S, Kilhovd B, Lager I, Mustajoki P, Dejgaard A, for the Scandinavian Repaglinide Group (2001) Comparison between repaglinide and glipizide in type 2 diabetes mellitus: a 1-year multicentre study. Diabet Med 18:395–401CrossRefGoogle Scholar
  123. 123.
    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Diabetes Care 35:1364PubMedCentralCrossRefPubMedGoogle Scholar
  124. 124.
    Ekström N, Svensson AM, Miftaraj M, Andersson SK, Cederholm J, Zethelius B, Eliasson B, Gudbjörnsdottir S (2015) Durability of oral hypoglycemic agents in drug naïve patients with type 2 diabetes: report from the Swedish National Diabetes Register (NDR). BMJ Open Diabetes Res Care 3:e000059PubMedCentralCrossRefPubMedGoogle Scholar
  125. 125.
    Moses R, Slobodniuk R, Boyages S, Colagiuri S, Kidson W, Carter J, Donnelly T, Moffitt P, Hopkins H (1999) Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 22:119–124CrossRefGoogle Scholar
  126. 126.
    Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, Fosbøl EL, Køber L, Norgaard ML, Madsen M, Hansen PR, Torp-Pedersen C (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32:1900–1908CrossRefGoogle Scholar
  127. 127.
    Creutzfeldt W (2005) The [pre-] history of the incretin concept. Regul Pept 128:87–91CrossRefGoogle Scholar
  128. 128.
    Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2003) Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 114:115–121CrossRefGoogle Scholar
  129. 129.
    Eissele R, Göke R, Willemer S, Harthus HP, Vermeer H, Arnold R, Göke B (1992) Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 22:283–291CrossRefGoogle Scholar
  130. 130.
    Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H (2012) Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196CrossRefGoogle Scholar
  131. 131.
    Thorens B (1992) Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 89:8641–8645PubMedCentralCrossRefPubMedGoogle Scholar
  132. 132.
    Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA, Boyd AE (1993) Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology 133:1907–1910CrossRefGoogle Scholar
  133. 133.
    Gremlich S, Porret A, Hani EH, Cherif D, Vionnet N, Froguel P, Thorens B (1995) Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes 44:1202–1208CrossRefGoogle Scholar
  134. 134.
    Seino Y, Fukushima M, Yabe D (2010) GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Invest 1:8–23CrossRefGoogle Scholar
  135. 135.
    Salon JA, Lodowski DT, Palczewski K (2011) The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 63:901–937PubMedCentralCrossRefPubMedGoogle Scholar
  136. 136.
    Wang MW, Liu Q, Zhou C (2010) Non-peptidic glucose-like peptide-1 receptor agonists: aftermath of a serendipitous discovery. Acta Pharmacol Sin 31:1026–1030PubMedCentralCrossRefPubMedGoogle Scholar
  137. 137.
    Su H, He M, Li H, Liu Q, Wang J, Wang Y, Gao W, Zhou L, Liao J, Young AA, Wang MW (2008) Boc5, a non-peptidic glucagon-like peptide-1 receptor agonist, invokes sustained glycemic control and weight loss in diabetic mice. PLoS One 3:e2892PubMedCentralCrossRefPubMedGoogle Scholar
  138. 138.
    Chen D, Liao J, Li N, Zhou C, Liu Q, Wang G, Zhang R, Zhang S, Lin L, Chen K, Nan F, Young AA, Wang MW (2007) A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. Proc Natl Acad Sci U S A 104:943–948PubMedCentralCrossRefPubMedGoogle Scholar
  139. 139.
    Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, Baron AD (2005) Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 62:173–181CrossRefGoogle Scholar
  140. 140.
    Agersø H, Jensen LB, Elbrønd B, Rolan P, Zdravkovic M (2002) The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 45:195–202CrossRefGoogle Scholar
  141. 141.
    Cai Y, Wei L, Ma L, Huang X, Tao A, Liu Z, Yuan W (2013) Long-acting preparations of exenatide. Drug Des Devel Ther 7:963–970PubMedCentralPubMedGoogle Scholar
  142. 142.
    Hansen KB, Vilsbøll T, Knop FK (2010) Incretin mimetics: a novel therapeutic option for patients with type 2 diabetes - a review. Diabetes Metab Syndr Obes 17:155–163Google Scholar
  143. 143.
    Pinkney J, Fox T, Ranganath L (2010) Selecting GLP-1 agonists in the management of type 2 diabetes: differential pharmacology and therapeutic benefits of liraglutide and exenatide. Ther Clin Risk Manag 6:401–411PubMedCentralCrossRefPubMedGoogle Scholar
  144. 144.
    Schlögl H, Kabisch S, Horstmann A, Lohmann G, Müller K, Lepsien J, Busse-Voigt F, Kratzsch J, Pleger B, Villringer A, Stumvoll M (2013) Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care 36:1933–1940PubMedCentralCrossRefPubMedGoogle Scholar
  145. 145.
    Edwards CM, Stanley SA, Davis R, Brynes AE, Frost GS, Seal LJ, Ghatei MA, Bloom SR (2001) Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 281:E155–E161CrossRefGoogle Scholar
  146. 146.
    Ando T, Haraguchi A, Matsunaga T, Natsuda S, Yamasaki H, Usa T, Kawakami A (2014) Liraglutide as a potentially useful agent for regulating appetite in diabetic patients with hypothalamic hyperphagia and obesity. Intern Med 53:1791–1795CrossRefGoogle Scholar
  147. 147.
    Zoicas F, Droste M, Mayr B, Buchfelder M, Schöfl C (2013) GLP-1 analogues as a new treatment option for hypothalamic obesity in adults: report of nine cases. Eur J Endocrinol 168:699–706CrossRefGoogle Scholar
  148. 148.
    Matveyenko AV, Butler PC (2008) Relationship between b-cell mass and diabetes onset. Diabetes Obes Metab 10:23–31PubMedCentralCrossRefPubMedGoogle Scholar
  149. 149.
    Demeterco C, Hao E, Lee SH, Itkin-Ansari P, Levine F (2009) Adult human b-cell neogenesis? Diabetes Obes Metab 11:46–53CrossRefGoogle Scholar
  150. 150.
    Bunck MC, Cornér A, Eliasson B, Heine RJ, Shaginian RM, Taskinen MR, Smith U, Yki-Järvinen H, Diamant M (2011) Effects of exenatide on measures of b-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 34:2041–2047PubMedCentralCrossRefPubMedGoogle Scholar
  151. 151.
    Kjems LL, Holst JJ, Vølund A, Madsbad S (2003) The influence of GLP-1 on glucose-stimulated insulin secretion: effects on β-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386CrossRefGoogle Scholar
  152. 152.
    Mondragon A, Davidsson D, Kyriakoudi S, Bertling A, Gomes-Faria R, Cohen P, Rothery S, Chabosseau P, Rutter GA, da Silva Xavier G (2014) Divergent effects of liraglutide, exendin-4, and sitagliptin on beta-cell mass and indicators of pancreatitis in a mouse model of hyperglycaemia. PLoS One 9:e104873PubMedCentralCrossRefPubMedGoogle Scholar
  153. 153.
    Rutti S, Sauter NS, Bouzakri K, Prazak R, Halban PA, Donath MY (2012) In vitro proliferation of adult human beta-cells. PLoS One 7:e35801PubMedCentralCrossRefPubMedGoogle Scholar
  154. 154.
    Toso C, McCall M, Emamaullee J, Merani S, Davis J, Edgar R, Pawlick R, Kin T, Knudsen LB, Shapiro AMJ (2010) Liraglutide, a long-acting human glucagon-like peptide 1 analogue, improves human islet survival in culture. Transpl Int 23:259–265CrossRefGoogle Scholar
  155. 155.
    Bregenholt S, Møldrup A, Blume N, Karlsen AE, Friedrichsen BN, Tornhave D, Knudsen LB, Petersen JS (2005) The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits b-cell apoptosis in vitro. Biochem Biophys Res Commun 330:577–584CrossRefGoogle Scholar
  156. 156.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) b-Cell deficit and Increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefGoogle Scholar
  157. 157.
    Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD, Giovannoni L, Parnaud G, Berney T (2010) Unique arrangement of α- and β-cells in human Islets of Langerhans. Diabetes 59:1202–1210PubMedCentralCrossRefPubMedGoogle Scholar
  158. 158.
    Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339PubMedCentralCrossRefPubMedGoogle Scholar
  159. 159.
    Steiner DJ, Kim A, Miller K, Hara M (2010) Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2:135–145PubMedCentralCrossRefPubMedGoogle Scholar
  160. 160.
    Butler PC, Elashoff M, Elashoff R, Gale EAM (2013) A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe? Diabetes Care 36:2118–2125PubMedCentralCrossRefPubMedGoogle Scholar
  161. 161.
    Perfetti R, Zhou J, Doyle ME, Egan JM (2000) Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose intolerant rats. Endocrinology 141:4600–4605CrossRefGoogle Scholar
  162. 162.
    Nauck MA, Friedrich N (2013) Do GLP-1-based therapies increase cancer risk? Diabetes Care 36:S245–S252PubMedCentralCrossRefPubMedGoogle Scholar
  163. 163.
    Noel RA, Braun DK, Patterson RE, Bloomgren GL (2009) Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care 32:834–838PubMedCentralCrossRefPubMedGoogle Scholar
  164. 164.
    David F, Bernard AM, Pierres M, Marguet D (1993) Identification of serine 624, aspartic acid 702, and histidine 734 as the catalytic triad residues of mouse dipeptidyl-peptidase IV (CD26). A member of a novel family of nonclassical serine hydrolases. J Biol Chem 268:17247–17252Google Scholar
  165. 165.
    Lankas GR, Leiting B, Roy RS, Eiermann GJ, Beconi MG, Biftu T, Chan CC, Edmondson S, Feeney WP, Huaibing H, Ippolito DE, Kim D, Lyons KA, Ok HO, Patel RA, Petrov AN, Pryor KA, Qian X, Reigle L, Woods A, Wu JK, Zaller D, Zhang X, Zhu L, Weber AE, Thornberry NA (2005) Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 54:2988–2994CrossRefGoogle Scholar
  166. 166.
    Lambeir A-M, Durinx C, Scharpé S, De Meester I (2013) Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPPIV. Crit Rev Clin Lab Sci 40:209–294CrossRefGoogle Scholar
  167. 167.
    Durinx C, Lambeir AM, Bosmans E, Falmagne JB, Berghmans R, Haemers A, Scharpé S, De Meester I (2000) Molecular characterization of dipeptidyl peptidase activity in serum. Eur J Biochem 267:5608–5613CrossRefGoogle Scholar
  168. 168.
    Kos K, Baker AR, Jernas M, Harte AL, Clapham JC, O’Hare JP, Carlsson L, Kumar S, McTernan PG (2009) DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue. Diabetes Obes Metab 11:285–292CrossRefGoogle Scholar
  169. 169.
    Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U, Kiefersauer R, Huber R, Bode W, Demuth HU, Brandstetter H (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A 100:5063–5068PubMedCentralCrossRefPubMedGoogle Scholar
  170. 170.
    Aertgeerts K, Ye S, Tennant MG, Kraus ML, Rogers J, Sang BC, Skene RJ, Webb DR, Prasad GS (2004) Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 13:412–421PubMedCentralCrossRefPubMedGoogle Scholar
  171. 171.
    Sebokova E, Christ AD, Boehringer M, Mizrahi J (2015) Dipeptidyl peptidase IV inhibitors: the next generation of new promising therapies for the management of type 2 diabetes. Curr Top Med Chem 7:547–555CrossRefGoogle Scholar
  172. 172.
    Shubrook J, Colucci R, Guo A, Schwartz F (2011) Saxagliptin: a selective DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Clin Med Insights Endocrinol Diab 4:1–12Google Scholar
  173. 173.
    Toth PP (2015) Overview of saxagliptin efficacy and safety in patients with type 2 diabetes and cardiovascular disease or risk factors for cardiovascular disease. Vasc Health Risk Manag 11:9–23Google Scholar
  174. 174.
    Banerjee M, Younis N, Soran H (2009) Vildagliptin in clinical practice: a review of literature. Expert Opin Pharmacother 10:2745–2757CrossRefGoogle Scholar
  175. 175.
    Dhillon S (2010) Sitagliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs 70:489–512CrossRefGoogle Scholar
  176. 176.
    Ahrén B (2014) Insulin plus incretin: a glucose-lowering strategy for type 2-diabetes. World J Diabetes 5:40–51PubMedCentralCrossRefPubMedGoogle Scholar
  177. 177.
    Pratley RE, Schweizer A, Rosenstock J, Foley JE, Banerji MA, Pi-Sunyer FX, Mills D, Dejager S (2008) Robust improvements in fasting and prandial measures of b-cell function with vildagliptin in drug-naïve patients: analysis of pooled vildagliptin monotherapy database. Diabetes Obes Metab 10:931–938CrossRefGoogle Scholar
  178. 178.
    Del Prato S, Barnett AH, Huisman H, Neubacher D, Woerle HJ, Dugi KA (2011) Effect of linagliptin monotherapy on glycaemic control and markers of b-cell function in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab 13:258–267CrossRefGoogle Scholar
  179. 179.
    Ahrén B, Pacini G, Tura A, Foley JE, Schweizer A (2007) Improved meal-related insulin processing contributes to the enhancement of b-cell function by the DPP-4 inhibitor vldagliptin in patients with type 2 diabetes. Horm Metab Res 39:826–829CrossRefGoogle Scholar
  180. 180.
    Yeom JA, Kim ES, Park HS, Ham DS, Sun K, Kim JW, Cho JH, Yoon KH (2011) Both sitagliptin analogue & pioglitazone preserve the beta-cell proportion in the islets with different mechanism in non-obese and obese diabetic mice. BMB Rep 44:713–718CrossRefGoogle Scholar
  181. 181.
    Girgis CM, Champion BL (2011) Vildagliptin-induced acute pancreatitis. Endocr Pract 17:e48–e50CrossRefGoogle Scholar
  182. 182.
    Lee CF, Sun MS, Tai YK (2014) Saxagliptin-induced recurrent acute pancreatitis. Intern Med 53:1351–1354CrossRefGoogle Scholar
  183. 183.
    Chang CH, Lin JW, Chen ST, Lai MS, Cuang LM, Chang YC (2016) Dipeptidyl peptidase-4 inhibitor use is not associated with acute pancreatitis in high-risk type 2 diabetic patients: a nationwide cohort study. Medicine 95:e2603–e2609PubMedCentralCrossRefPubMedGoogle Scholar
  184. 184.
    Karagiannis T, Bekiari E, Boura P, Tsapas A (2015) Cardiovascular risk with DPP-4 inhibitors: latest evidence and clinical implications. Ther Adv Drug Saf 7:36–38PubMedCentralCrossRefPubMedGoogle Scholar
  185. 185.
    Brunton S (2014) GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: is one approach more successful or preferable than the other? Int J Clin Pract 68:557–567PubMedCentralCrossRefPubMedGoogle Scholar
  186. 186.
    Wright EM, Loo DDF, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794CrossRefGoogle Scholar
  187. 187.
    Wright EM (2001) Renal Na+-glucose cotransporters. Am J Physiol Renal Physiol 280:F10–F18CrossRefGoogle Scholar
  188. 188.
    Mackenzie B, Loo DDF, Panayotova-Heiermann M, Wright EM (1996) Biophysical characteristics of the pig kidney Na+/Glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J Biol Chem 271:32678–32683CrossRefGoogle Scholar
  189. 189.
    Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA (1992) Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Physiol Renal Physiol 263:F459–F465CrossRefGoogle Scholar
  190. 190.
    Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397–404PubMedCentralCrossRefPubMedGoogle Scholar
  191. 191.
    DeFronzo RA, Hompesch M, Kasichayanula S, Liu X, Hong Y, Pfister M, Morrow LA, Leslie BR, Boulton DW, Ching A, LaCreta FP, Griffen SC (2013) Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 36:3169–3176PubMedCentralCrossRefPubMedGoogle Scholar
  192. 192.
    Calado J, Soto K, Clemente C, Correia P, Rueff J (2004) Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria. Hum Genet 114:314–316CrossRefGoogle Scholar
  193. 193.
    van den Heuvel L, Assink K, Willemsen M, Monnens L (2002) Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 111:544–547CrossRefGoogle Scholar
  194. 194.
    Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diabetes Vasc Dis Res 12:78–89CrossRefGoogle Scholar
  195. 195.
    Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515PubMedCentralCrossRefPubMedGoogle Scholar
  196. 196.
    Isaji M (2011) SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int 79:S14–S19CrossRefGoogle Scholar
  197. 197.
    Nomura S, Sakamaki S, Hongu M, Kawanishi E, Koga Y, Sakamoto T, Yamamoto Y, Ueta K, Kimata H, Nakayama K, Tsuda-Tsukimoto M (2010) Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes Mellitus. J Med Chem 53:6355–6360CrossRefGoogle Scholar
  198. 198.
    Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Taylor JR, Obermeier MT, Humphreys WG, Khanna A, Discenza L, Robertson JG, Wang A, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM, Washburn WN (2008) Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 51:1145–1149CrossRefGoogle Scholar
  199. 199.
    Neumiller JJ (2014) Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Drugs Context 3:212262PubMedCentralPubMedGoogle Scholar
  200. 200.
    Hummel CS, Lu C, Liu J, Ghezzi C, Hirayama BA, Loo DDF, Kepe V, Barrio JR, Wright EM (2011) Structural selectivity of human SGLT inhibitors. Am J Physiol Cell Physiol 302:C373–C382PubMedCentralCrossRefPubMedGoogle Scholar
  201. 201.
    Valentine V (2015) The role of the kidney and sodium-glucose cotransporter-2 inhibition in diabetes management. Clin Diab 30:151–155CrossRefGoogle Scholar
  202. 202.
    Kalra S (2014) Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther 5:355–366PubMedCentralCrossRefPubMedGoogle Scholar
  203. 203.
    Dietrich E, Powell J, Taylor JR (2013) Canagliflozin: a novel treatment option for type 2 diabetes. Drug Des Devel Ther 7:1399–1408PubMedCentralCrossRefPubMedGoogle Scholar
  204. 204.
    Aylsworth A, Dean Z, VanNorman C, Okere AN (2014) Dapagliflozin for the treatment of type 2 diabetes mellitus. Ann Pharmacother 48:1202–1208CrossRefGoogle Scholar
  205. 205.
    Heise T, Seman L, Macha S, Jones P, Marquart A, Pinnetti S, Woerle HJ, Dugi K (2013) Safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple rising doses of empagliflozin in patients with type 2 diabetes mellitus. Diabetes Ther 4:331–345PubMedCentralCrossRefPubMedGoogle Scholar
  206. 206.
    Kasichayanula S, Liu X, LaCreta F, Griffen SC, Boulton DW (2014) Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet 53:17–27CrossRefGoogle Scholar
  207. 207.
    Ghezzi C, Hirayama BA, Gorraitz E, Loo DDF, Liang Y, Wright EM (2014) SGLT2 inhibitors act from the extracellular surface of the cell membrane. Physiol Rep 2:e12058PubMedCentralCrossRefPubMedGoogle Scholar
  208. 208.
    Anderson SL (2014) Dapagliflozin efficacy and safety: a perspective review. Ther Adv Drug Saf 5:242–254PubMedCentralCrossRefPubMedGoogle Scholar
  209. 209.
    Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J, Parikh S (2011) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metabol 97:1020–1031CrossRefGoogle Scholar
  210. 210.
    Nauck MA, Del Prato S, Meier JJ, Durán-García S, Rohwedder K, Elze M, Parikh SJ (2011) Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 34:2015–2022PubMedCentralCrossRefPubMedGoogle Scholar
  211. 211.
    Strojek K, Yoon KH, Hruba V, Sugg J, Langkilde A, Parikh S (2014) Dapagliflozin added to glimepiride in patients with type 2 diabetes mellitus sustains glycemic control and weight loss Over 48-weeks: a randomized, double-blind, parallel-group, placebo-controlled trial. Diabetes Ther 5:267–283PubMedCentralCrossRefPubMedGoogle Scholar
  212. 212.
    Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S (2014) Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 103:373–381CrossRefGoogle Scholar
  213. 213.
    Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I (2016) Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol 15:37PubMedCentralCrossRefPubMedGoogle Scholar
  214. 214.
    MacIsaac RJ, Jerums G, Ekinci EI (2016) Cardio-renal protection with empagliflozin. Ann Transl Med 4:409–412PubMedCentralCrossRefPubMedGoogle Scholar
  215. 215.
    Liakos A, Karagiannis T, Bekiari E, Boura P, Tsapas A (2014) Update on long-term efficacy and safety of dapagliflozin in patients with type 2 diabetes mellitus. Ther Adv Endocrinol Metab 6:61–67CrossRefGoogle Scholar
  216. 216.
    Sosale B, Sosale A, Bhattacharyya A (2016) Clinical effectiveness and impact on insulin therapy cost after addition of dapagliflozin to patients with uncontrolled type 2 diabetes. Diabetes Ther 7:765–776PubMedCentralCrossRefPubMedGoogle Scholar
  217. 217.
    Issandou M, Bouillot A, Brusq J, Forest M, Grillot D, Guillard R, Martin S, Michiels C, Sulpice T, Daugan A (2009) Pharmacological inhibition of Stearoyl-CoA Desaturase 1 improves insulin sensitivity in insulin-resistant rat models. Eur J Pharmacol 618:28–36CrossRefGoogle Scholar
  218. 218.
    Lepifre F, Christmann-Franck S, Roche D, Leriche C, Carniato D, Charon C, Bozec S, Doare L, Schmidlin F, Lecomte M, Valeur E (2009) Discovery and structure-guided drug design of inhibitors of 11b-hydroxysteroid-dehydrogenase type I based on a spiro-carboxamide scaffold. Bioorg Med Chem Lett 19:3682CrossRefGoogle Scholar
  219. 219.
    Birch AM, Buckett LK, Turnbull AV (2010) DGAT1 inhibitors as anti-obesity and anti-diabetic agents. Curr Opin Drug Discov Devel 13:489–496Google Scholar
  220. 220.
    Kaiser D, Oetjen E (2014) Something old, something new and something very old: drugs for treating type 2 diabetes. Br J Pharmacol 171:2940–2950PubMedCentralCrossRefPubMedGoogle Scholar
  221. 221.
    Ichimura A, Hasegawa S, Kasubuchi M, Kimura I (2014) Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol 5:236PubMedCentralCrossRefPubMedGoogle Scholar
  222. 222.
    Miller BR, Nguyen H, Hu CJH, Lin C, Nguyen QT (2014) New and emerging drugs and targets for type 2 diabetes: reviewing the evidence. Am Health Drug Benefits 7:452–463PubMedCentralPubMedGoogle Scholar
  223. 223.
    Cornell S (2015) Continual evolution of type 2 diabetes: an update on pathophysiology and emerging treatment options. Ther Clin Risk Manag 11:621–632PubMedCentralCrossRefPubMedGoogle Scholar
  224. 224.
    Morgan S, Grootendorst P, Lexchin J, Cunningham C, Greyson D (2011) The cost of drug development: a systematic review. Health Policy 100:4–17CrossRefGoogle Scholar
  225. 225.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214CrossRefGoogle Scholar
  226. 226.
    Herper M (2012) The truly staggering cost of inventing new drugs. Forbes. https://www.forbes.com/sites/matthewherper/2012/02/10/the-truly-staggering-cost-of-inventing-new-drugs/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Medical SchoolUniversity of BuckinghamBuckinghamUK

Personalised recommendations