Advertisement

Detection and Characterization of Transposons in Bacteria

  • Catherine GuynetEmail author
  • Phan Thai Nguyen Le
  • Michael Chandler
  • Bao Ton-HoangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2075)

Abstract

Bacterial transposons, through their ability to transfer DNA sequences from one position in the genome to another, play a central role in the shape and the evolution of genomes. Extensive studies have been performed during the last five decades to understand the molecular mechanisms involved in the transposition of a variety of elements. Among the methods used, the papillation and the mating out coupled to arbitrary primed PCR assays described in this chapter are widely used as very powerful approaches to detect and characterize transposition events in vivo.

Key words

Transposition Transposon Mating out Arbitrary primed PCR Papillation 

Notes

Acknowledgments

We thank Catherine Turlan for careful reading and suggestions and François Cornet, Jean-Yves Bouet, and Roxanne Diaz for discussions concerning this manuscript. This work was supported by the Agence National pour la Recherche (ANR-12-BSV8-0009-01).

References

  1. 1.
    Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62(3):725–774. ReviewPubMedPubMedCentralGoogle Scholar
  2. 2.
    Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition:from mu to kangaroo. Nat Rev Mol Cell Biol 4(11):865–877. Review.  https://doi.org/10.1038/nrm1241CrossRefPubMedGoogle Scholar
  3. 3.
    Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M (2015) Everyman’s guide to bacterial insertion sequences. Microbiol Spectr 3(2).  https://doi.org/10.1128/microbiolspec.MDNA3-0030-2014. MDNA3-0030-2014. Review. PMID: 26104715
  4. 4.
    Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511PubMedPubMedCentralGoogle Scholar
  5. 5.
    Huisman O, Kleckner N (1987) A new generalizable test for detection of mutations affecting Tn10 transposition. Genetics 116(2):185–189PubMedPubMedCentralGoogle Scholar
  6. 6.
    Makris JC, Nordmann PL, Reznikoff WS (1988) Mutational analysis of insertion sequence 50 (IS50) and transposon 5 (Tn5) ends. Proc Natl Acad Sci U S A 85(7):2224–2228CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lu F, Craig NL (2000) Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation. EMBO J 19(13):3446–3457.  https://doi.org/10.1093/emboj/19.13.3446CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Serre MC, Turlan C, Bortolin M, Chandler M (1995) Mutagenesis of the IS1 transposase: importance of a his-Arg-Tyr triad for activity. J Bacteriol 177(17):5070–5077CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Derbyshire KM, Grindley ND (1996) Cis preference of the IS903 transposase IS mediated by a combination of transposase instability and inefficient translation. Mol Microbiol 21(6):1261–1272CrossRefPubMedGoogle Scholar
  10. 10.
    Twiss E, Coros AM, Tavakoli NP, Derbyshire KM (2005) Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol Microbiol 57(6):1593–1607.  https://doi.org/10.1111/j.1365-2958.2005.04794.xCrossRefPubMedGoogle Scholar
  11. 11.
    Lee I, Harshey RM (2001) Importance of the conserved CA dinucleotide at mu termini. J Mol Biol 314(3):433–444.  https://doi.org/10.1006/jmbi.2001.5177CrossRefPubMedGoogle Scholar
  12. 12.
    Pajunen MI, Rasila TS, Happonen LJ, Lamberg A, Haapa-Paananen S, Kiljunen S, Savilahti H (2010) Universal platform for quantitative analysis of DNA transposition. Mob DNA 1(1):24.  https://doi.org/10.1186/1759-8753-1-24CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lambin M, Nicolas E, Oger CA, Nguyen N, Prozzi D, Hallet B (2012) Separate structural and functional domains of Tn4430 transposase contribute to target immunity. Mol Microbiol 83(4):805–820.  https://doi.org/10.1111/j.1365-2958.2012.07967.xCrossRefPubMedGoogle Scholar
  14. 14.
    Galas DJ, Chandler M (1982) Structure and stability of Tn9-mediated cointegrates. Evidence for two pathways of transposition. J Mol Biol 154(2):245–272CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson RC, Reznikoff WS (1984) Copy number control of Tn5 transposition. Genetics 107(1):9–18PubMedPubMedCentralGoogle Scholar
  16. 16.
    Polard P, Prère MF, Fayet O, Chandler M (1992) Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J 11(13):5079–5090CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mendiola MV, Bernales I, de la Cruz F (1994) Differential roles of the transposon termini in IS91 transposition. Proc Natl Acad Sci U S A 91(5):1922–1926CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ton-Hoang B, Guynet C, Ronning DR, Cointin-Marty B, Dyda F, Chandler M (2005) Transposition of ISHp608, member of a novel family of bacterial insertion sequences. EMBO J 24(18):3325–3338.  https://doi.org/10.1038/sj.emboj.7600787CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kleckner N, Barker DF, Ross DG, Botstein D (1978) Properties of the translocatable tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda. Genetics 90(3):427–461PubMedPubMedCentralGoogle Scholar
  20. 20.
    Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guynet C, Achard A, Ton-Hoang B, Barabas O, Hickman AB, Dyda F, Chandler M (2009) Resetting the site: redirecting integration of an insertion sequence in a predictable way. Mol Cell 34(5):612–619.  https://doi.org/10.1016/j.molcel.2009.05.017CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S (2010) Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 6(1):e1000799.  https://doi.org/10.1371/journal.pgen.1000799CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI)Centre National de la Recherche Scientifique (CNRS)¸ Université de Toulouse, UPSToulouseFrance
  2. 2.Department of Biochemistry, Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonUSA

Personalised recommendations