Plasmid Reconstruction from Next-Gen Data: A Detailed Protocol for the Use of PLACNETw for the Reconstruction of Plasmids from WGS Datasets

  • María de ToroEmail author
  • Val F. Lanza
  • Luis Vielva
  • Santiago Redondo-Salvo
  • Fernando de la Cruz
Part of the Methods in Molecular Biology book series (MIMB, volume 2075)


Mobile Genetic Elements (MGE) play essential roles in adaptive bacterial evolution, facilitating genetic exchange for extrachromosomal DNA, especially antibiotic resistance genes and virulence factors. For this reason, high-throughput next-generation sequencing of bacteria is of great relevance, especially for clinical pathogenic bacteria. Accurate identification of MGE from whole-genome sequencing (WGS) datasets is one of the major challenges, still hindered by methodological limitations and high sequencing costs.

This chapter encompasses the protocol used for plasmid reconstruction by applying the PLACNETw methodology, from raw reads to assembled plasmids and chromosome. PLACNETw is a graphical user-friendly interface to visualize and reconstruct MGE from short-read WGS datasets. No bioinformatic background or sophisticated computational resources are required and high precision and sensitivity are achieved.

Key words

Mobile genetic elements Whole genome sequencing Plasmids ICEs 

Supplementary material


(MP4 558,193 kb)


  1. 1.
    Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976CrossRefPubMedGoogle Scholar
  2. 2.
    Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wick RR, Judd LM, Gorrie CL et al (2017) Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genomics:1–7Google Scholar
  4. 4.
    Liao YC, Lin SH, Lin HH (2015) Completing bacterial genome assemblies: strategy and performance comparisons. Sci Rep 5Google Scholar
  5. 5.
    Utturkar SM, Klingeman DM, Hurt RA et al (2017) A case study into microbial genome assembly gap sequences and finishing strategies. Front Microbiol 8:1272CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Laczny CCC, Galata V, Plum A et al (2017) Assessing the heterogeneity of in silico plasmid predictions using whole-genome sequenced clinical isolates. Brief Bioinform:1–9Google Scholar
  7. 7.
    Carattoli A, Zankari E, García-Fernández A et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Leplae R, Lima-Mendez G, Toussaint A (2010) ACLAME: a CLAssification of Mobile genetic elements, update 2010. Nucleic Acids Res 38:D57–D61CrossRefPubMedGoogle Scholar
  9. 9.
    Antipov D, Hartwick N, Shen M et al (2016) plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 32(22):3380–3387PubMedGoogle Scholar
  10. 10.
    Zhou F, Xu Y (2010) cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics 26:2051–2052CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rozov R, Kav AB, Bogumil D et al (2017) Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Microbiol Spectr 33:475–482Google Scholar
  12. 12.
    Arredondo-Alonso S, Rogers MRC, Braat JC et al (2018) mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom 4(11)Google Scholar
  13. 13.
    Arredondo-Alonso S, van Schaik W, Willems RJ et al (2017) On the (im)possibility to reconstruct plasmids from whole genome short-read sequencing data. Microb Genomics 3(10):e000128CrossRefGoogle Scholar
  14. 14.
    Lanza VF, de TM, Garcillán-Barcia MP et al (2014) Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet 10:e1004766CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    de BM, Lanza VF, de TM et al (2014) Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet 10:e1004776CrossRefGoogle Scholar
  16. 16.
    Vielva L, de Toro M, Lanza VF et al (2017) PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes. Bioinformatics 33:3796–3798CrossRefPubMedGoogle Scholar
  17. 17.
    Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zerbino DR (2010) Using the velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinforma. Chapter 11:Unit 11.5Google Scholar
  19. 19.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hyatt D, Chen G-L, Locascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fernandez-Lopez R, Redondo S, Garcillan-Barcia MP et al (2017) Towards a taxonomy of conjugative plasmids. Curr Opin Microbiol 38:106–113CrossRefPubMedGoogle Scholar
  23. 23.
    Garcillán-Barcia MP, Francia MV, de l CF (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33:657–687CrossRefPubMedGoogle Scholar
  24. 24.
    Alvarado A, Garcillán-Barcia MP, de l CF (2012) A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings. PLoS One 7:e40438CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    de Toro M, Garcillán-Barcia MPP, De La Cruz F (2014) Plasmid diversity and adaptation analyzed by massive sequencing of Escherichia coli plasmids. Microbiol Spectr 2:219–235Google Scholar
  26. 26.
    Johnson TJ, Bielak EM, Fortini D et al (2012) Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68(1):43–50CrossRefPubMedGoogle Scholar
  27. 27.
    Rhodes J, Beale MA, Fisher MC (2014) Illuminating choices for library prep: a comparison of library preparation methods for whole genome sequencing of Cryptococcus neoformans using Illumina HiSeq. PLoS One 9:e113501CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huptas C, Scherer S, Wenning M (2016) Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes 9:269CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • María de Toro
    • 1
    Email author
  • Val F. Lanza
    • 2
    • 3
    • 4
  • Luis Vielva
    • 5
  • Santiago Redondo-Salvo
    • 6
  • Fernando de la Cruz
    • 6
  1. 1.Plataforma de Genómica y BioinformáticaCentro de Investigación Biomédica de La Rioja (CIBIR) - Fundación Rioja Salud (FRS)LogroñoSpain
  2. 2.Department of MicrobiologyRamón y Cajal University Hospital (IRYCIS)MadridSpain
  3. 3.CIBER in Epidemiology and Public Health, (CIBERESP)MadridSpain
  4. 4.Bioinformatics UnitRamón y Cajal Universitary Hospital (IRYCIS)MadridSpain
  5. 5.Departamento de Ingeniería de ComunicacionesUniversidad de CantabriaSantanderSpain
  6. 6.Instituto de Biomedicina y Biotecnología de CantabriaUniversidad de Cantabria-CSICSantanderSpain

Personalised recommendations