Advertisement

Atomic Force Microscopy of Proteins

  • Yiran An
  • Sesha Sarathchandra Manuguri
  • Jenny MalmströmEmail author
Protocol
  • 708 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2073)

Abstract

Atomic force microscopy (AFM) enables imaging of surface-deposited proteins and protein structures under physiological conditions, which is a benefit compared to ultra-high vacuum techniques such as electron microscopy. AFM also has the potential to provide more information from the phase in tapping mode or from functional AFM modes. The sample preparation, probe selection, and imaging conditions are crucial for successful imaging of proteins. Here we give a detailed account of the steps toward imaging of soft samples in both air and liquid along with the basic theory underpinning these details.

Key words

Atomic force microscopy Proteins Sample preparation Probe selection Imaging conditions 

References

  1. 1.
    Ross FM (2015) Opportunities and challenges in liquid cell electron microscopy. Science 350(6267).  https://doi.org/10.1126/science.aaa9886. ARTN aaa9886
  2. 2.
    Scheuring S, Fotiadis D, Moller C, Muller SA, Engel A, Muller DJ (2001) Single proteins observed by atomic force microscopy. Single Mol 2(2):59–67CrossRefGoogle Scholar
  3. 3.
    Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301.  https://doi.org/10.1016/S0167-5729(02)00077-8. Pii S0167-5729(02)00077-8CrossRefGoogle Scholar
  4. 4.
    Hansma HG, Kim KJ, Laney DE, Garcia RA, Argaman M, Allen MJ, Parsons SM (1997) Properties of biomolecules measured from atomic force microscope images: a review. J Struct Biol 119(2):99–108.  https://doi.org/10.1006/jsbi.1997.3855CrossRefGoogle Scholar
  5. 5.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930CrossRefGoogle Scholar
  6. 6.
    Fang S, Haplepete S, Chen W, Helms C, Edwards H (1997) Analyzing atomic force microscopy images using spectral methods. J Appl Phys 82(12):5891–5898CrossRefGoogle Scholar
  7. 7.
    Sheiko S, Möller M, Reuvekamp E, Zandbergen H (1994) Evaluation of the probing profile of scanning force microscopy tips. Ultramicroscopy 53(4):371–380CrossRefGoogle Scholar
  8. 8.
    Allen MJ, Hud NV, Balooch M, Tench RJ, Siekhaus WJ, Balhorn R (1992) Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers. Ultramicroscopy 42:1095–1100CrossRefGoogle Scholar
  9. 9.
    Westra K, Mitchell A, Thomson D (1993) Tip artifacts in atomic force microscope imaging of thin film surfaces. J Appl Phys 74(5):3608–3610CrossRefGoogle Scholar
  10. 10.
    Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119(2):172–188.  https://doi.org/10.1006/jsbi.1997.3875CrossRefGoogle Scholar
  11. 11.
    Ruzette A-V, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19.  https://doi.org/10.1038/nmat1295CrossRefGoogle Scholar
  12. 12.
    Hall A, Karplus PA, Poole LB (2009) Typical 2-Cys peroxiredoxins – structures, mechanisms and functions. FEBS J 276(9):2469–2477.  https://doi.org/10.1111/j.1742-4658.2009.06985.xCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wood ZA, Poole LB, Hantgan RR, Karplus PA (2002) Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41(17):5493–5504.  https://doi.org/10.1021/bi012173mCrossRefGoogle Scholar
  14. 14.
    Saccoccia F, Di Micco P, Boumis G, Brunori M, Koutris I, Miele Adriana E, Morea V, Sriratana P, Williams David L, Bellelli A, Angelucci F (2012) Moonlighting by different stressors: crystal structure of the chaperone species of a 2-cys peroxiredoxin. Structure 20(3):429–439.  https://doi.org/10.1016/j.str.2012.01.004CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Jayawardena N, Kaur M, Nair S, Malmstrom J, Goldstone D, Negron L, Gerrard JA, Domigan LJ (2017) Amyloid fibrils from hemoglobin. Biomol Ther 7(2):37Google Scholar
  16. 16.
    Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14(8):907–945CrossRefGoogle Scholar
  17. 17.
    Bryant PJ, Miller RG, Yang R (1988) Scanning tunneling and atomic force microscopy combined. Appl Phys Lett 52(26):2233–2235.  https://doi.org/10.1063/1.99541CrossRefGoogle Scholar
  18. 18.
    Willemsen OH, Snel MME, Cambi A, Greve J, De Grooth BG, Figdor CG (2000) Biomolecular interactions measured by atomic force microscopy. Biophys J 79(6):3267–3281.  https://doi.org/10.1016/S0006-3495(00)76559-3CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chung KH, Kim DE (2007) Wear characteristics of diamond-coated atomic force microscope probe. Ultramicroscopy 108(1):1–10.  https://doi.org/10.1016/j.ultramic.2007.01.016CrossRefGoogle Scholar
  20. 20.
    Xu X, Raman A (2007) Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids. J Appl Phys 102(3).  https://doi.org/10.1063/1.2767202. Artn 034303
  21. 21.
    Haugstad G (2012) Atomic force microscopy: understanding basic modes and advanced applications. John Wiley & Sons, Hoboken, NJCrossRefGoogle Scholar
  22. 22.
    Research OIA (2014) Asylum research AFM manualsGoogle Scholar
  23. 23.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112.  https://doi.org/10.1126/science.276.5315.1109CrossRefGoogle Scholar
  24. 24.
    Li YL, Liang H, Zhao HL, Chen D, Liu B, Fuhs T, Dong MD (2016) Characterization of inter- and intramolecular interactions of amyloid fibrils by AFM-based single-molecule force spectroscopy. J Nanomater:Artn 5463201.  https://doi.org/10.1155/2016/5463201
  25. 25.
    Petrosyan R, Bippes CA, Walheim S, Harder D, Fotiadis D, Schimmel T, Alsteens D, Muller DJ (2015) Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. Nano Lett 15(5):3624–3633.  https://doi.org/10.1021/acs.nanolett.5b01223CrossRefGoogle Scholar
  26. 26.
    Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319(2):433–447.  https://doi.org/10.1016/S0022-2836(02)00306-6CrossRefGoogle Scholar
  27. 27.
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397(6714):50–53.  https://doi.org/10.1038/16219CrossRefGoogle Scholar
  28. 28.
    Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152.  https://doi.org/10.1016/j.surfrep.2005.08.003CrossRefGoogle Scholar
  29. 29.
    Radmacher M (1997) Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag 16(2):47–57.  https://doi.org/10.1109/51.582176CrossRefGoogle Scholar
  30. 30.
    Capella B, Baschieri P, Frediani C, Miccoli P, Ascoli C (1997) Force-distance curves by AFM – a powerful technique for studying surface interactions. IEEE Eng Med Biol Mag 16(2):58–65CrossRefGoogle Scholar
  31. 31.
    Lin DC, Horkay F (2008) Nanomechanics of polymer gels and biological tissues: a critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 4(4):669–682.  https://doi.org/10.1039/b714637jCrossRefGoogle Scholar
  32. 32.
    Liang Y, Hilal N, Langston P, Starov V (2007) Interaction forces between colloidal particles in liquid: theory and experiment. Adv Colloid Interf Sci 134:151–166CrossRefGoogle Scholar
  33. 33.
    Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353(6341):239CrossRefGoogle Scholar
  34. 34.
    Girard P (2001) Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12(4):485CrossRefGoogle Scholar
  35. 35.
    Nakamura M, Yamada H (2007) Electrostatic force microscopy. In: Roadmap of scanning probe microscopy. Springer, New York, NY, pp 43–51CrossRefGoogle Scholar
  36. 36.
    Grütter P, Mamin H, Rugar D (1992) Magnetic force microscopy (MFM). In: Scanning tunneling microscopy II. Springer, New York, NY, pp 151–207CrossRefGoogle Scholar
  37. 37.
    Rugar D, Mamin H, Guethner P, Lambert S, Stern J, McFadyen I, Yogi T (1990) Magnetic force microscopy: general principles and application to longitudinal recording media. J Appl Phys 68(3):1169–1183CrossRefGoogle Scholar
  38. 38.
    Gruverman A, Kalinin SV (2006) Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci 41(1):107–116CrossRefGoogle Scholar
  39. 39.
    Kalinin SV, Rodriguez BJ, Jesse S, Shin J, Baddorf AP, Gupta P, Jain H, Williams DB, Gruverman A (2006) Vector piezoresponse force microscopy. Microsc Microanal 12(3):206–220CrossRefGoogle Scholar
  40. 40.
    Malvankar NS, Yalcin SE, Tuominen MT, Lovley DR (2014) Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat Nanotechnol 9(12):1012CrossRefGoogle Scholar
  41. 41.
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491CrossRefGoogle Scholar
  42. 42.
    Hsieh C-W, Zheng B, Hsieh S (2010) Ferritin protein imaging and detection by magnetic force microscopy. Chem Commun 46(10):1655–1657CrossRefGoogle Scholar
  43. 43.
    Cohen H, Sapir T, Borovok N, Molotsky T, Di Felice R, Kotlyar AB, Porath D (2007) Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Lett 7(4):981–986.  https://doi.org/10.1021/nl070013bCrossRefGoogle Scholar
  44. 44.
    Hempstead PD, Yewdall SJ, Fernie AR, Lawson DM, Artymiuk PJ, Rice DW, Ford GC, Harrison PM (1997) Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J Mol Biol 268(2):424–448.  https://doi.org/10.1006/jmbi.1997.0970CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yiran An
    • 1
    • 2
  • Sesha Sarathchandra Manuguri
    • 1
    • 2
    • 3
  • Jenny Malmström
    • 2
    • 3
    Email author
  1. 1.School of Chemical SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand
  3. 3.MacDiarmid Institute for Advanced Materials and NanotechnologyAucklandNew Zealand

Personalised recommendations