Nanotechnology with S-layer Proteins

  • Bernhard SchusterEmail author
  • Uwe B. Sleytr
Part of the Methods in Molecular Biology book series (MIMB, volume 2073)


Nanosciences are distinguished by the cross-fertilization of biology, chemistry, material sciences, and solid-state physics and, hence, open up a great variety of new opportunities for innovation. The technological utilization of self-assembly systems, wherein molecules spontaneously associate under equilibrium conditions into reproducible supramolecular structures, is one key challenge in nanosciences for life and non-life science applications. The attractiveness of such processes is due to their ability to build uniform, ultra-small functional units with predictable properties down to the nanometer scale. Moreover, newly developed techniques and methods open up the possibility to exploit these structures at meso- and macroscopic scale. An immense significance at innovative approaches for the self-assembly of supramolecular structures and devices with dimensions of a few to tens of nanometers constitutes the utilization of crystalline bacterial cell surface proteins. The latter have proven to be particularly suited as building blocks in a molecular construction kit comprising of all major classes of biological molecules. The controlled immobilization of biomolecules in an ordered fashion on solid substrates and their directed confinement in definite areas of nanometer dimensions are key requirements for many applications including the development of bioanalytical sensors, biochips, molecular electronics, biocompatible surfaces, and signal processing between functional membranes, cells, and integrated circuits.

Key words

Surface layers S-Layers Two-dimensional protein crystals Biomimetics Self-assembly Nanotechnology Nanobiotechnology Nanoparticle Construction kit Supported lipid membranes 



The research was funded by the Austrian Science Fund (FWF), project P 29399-B22.


  1. 1.
    Messner P, Schäffer C, Egelseer EM et al (2010) Occurrence, structure, chemistry, genetics, morphogenesis, and function of S-layers. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall compounds – structure and biochemistry. Springer, Heidelberg, pp 53–109Google Scholar
  2. 2.
    Sleytr UB, Egelseer EM, Ilk N et al (2010) Nanobiotechnological applications of S-layers. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall compounds – structure and biochemistry. Springer, Heidelberg, pp 459–481Google Scholar
  3. 3.
    Sleytr UB, Egelseer EM, Ilk N et al (2007) S-layers as a basic building block in a molecular construction kit. FEBS J 274:323–334PubMedGoogle Scholar
  4. 4.
    Sleytr UB, Huber C, Ilk N et al (2007) S-Layers as a tool kit for nanobiotechnological applications. FEMS Microbiol Lett 267:131–144PubMedGoogle Scholar
  5. 5.
    Sleytr UB, Messner P (2009) Crystalline bacterial cell surface layers (S-layers). In: Schaechter M (ed) Encyclopedia of microbiology, vol 1, 3rd edn. Elsevier, San Diego, CA, pp 89–98Google Scholar
  6. 6.
    Sleytr UB, Messner P, Pum D et al (1996) Crystalline bacterial cell surface proteins. Biotechnology intelligence unit. R. G. Landes Company, Austin, TXGoogle Scholar
  7. 7.
    Sleytr UB, Schuster B, Egelseer EM et al (2014) S-layers: principles and applications. FEMS Microbiol Rev 38(5):823–864PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sleytr UB (2016) Curiosity and passion for science and art, series in structural biology, vol 7. World Scientific Publishing Co. Inc., Hackensack NJGoogle Scholar
  9. 9.
    Sleytr UB (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int Rev Cytol 53:1–62PubMedGoogle Scholar
  10. 10.
    Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7(6):253–260PubMedGoogle Scholar
  11. 11.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583PubMedPubMedCentralGoogle Scholar
  12. 12.
    Sleytr UB, Messner P, Pum D et al (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1035–1054Google Scholar
  13. 13.
    Pum D, Sára M, Sleytr UB (1989) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E38-66. J Bacteriol 171(10):5296–5303PubMedPubMedCentralGoogle Scholar
  14. 14.
    Moreno-Flores S, Kasry A, Butt HJ et al (2008) From native to non-native two-dimensional protein lattices through underlying hydrophilic/hydrophobic nanoprotrusions. Angew Chem Int Ed 47:4707–4710Google Scholar
  15. 15.
    Sára M, Pum D, Sleytr UB (1992) Permeability and charge-dependent adsorption properties of the S-layer lattice from Bacillus coagulans E38-66. J Bacteriol 174(11):3487–3493PubMedPubMedCentralGoogle Scholar
  16. 16.
    Messner P, Pum D, Sleytr UB (1986) Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus NRS 2004/3a. J Ultrastruct Mol Struct Res 97:73–88PubMedGoogle Scholar
  17. 17.
    Sára M, Sleytr UB (1987) Charge distribution on the S layer of Bacillus stearothermophilus NRS 1536/3c and importance of charged groups for morphogenesis and function. J Bacteriol 169(6):2804–2809PubMedPubMedCentralGoogle Scholar
  18. 18.
    Diederich A, Sponer C, Pum D et al (1996) Reciprocal influence between the protein and lipid components of a lipid-protein membrane model. Colloids Surf B: Biointerfaces 6(6):335–346Google Scholar
  19. 19.
    Györvary ES, Stein O, Pum D et al (2003) Self-assembly and recrystallization of bacterial S-layer proteins at silicon supports imaged in real time by atomic force microscopy. J Microsc 212:300–306PubMedGoogle Scholar
  20. 20.
    Lopez AE, Moreno-Flores S, Pum D et al (2010) Surface dependence of protein nanocrystal formation. Small 6:396–403PubMedGoogle Scholar
  21. 21.
    Pum D, Tang J, Hinterdorfer P et al (2010) S-layer protein lattices studied by scanning force microscopy. In: Kumar C (ed) Biomimetic and bioinspired nanomaterials, vol 7. Wiley-VCH, Weinheim, pp 459–510Google Scholar
  22. 22.
    Pum D, Sara M, Schuster B et al (2006) Bacterial surface layer proteins: a simple but versatile biological self-assembly system in nature. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Berlin, pp 277–292Google Scholar
  23. 23.
    Sleytr UB (1975) Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature 257(5525):400–402PubMedGoogle Scholar
  24. 24.
    Sleytr UB, Györvary E, Pum D (2003) Crystallization of S-layer protein lattices on surfaces and interfaces. Prog Organ Coat 47:279–287Google Scholar
  25. 25.
    Pum D, Sleytr UB (2009) S-layer proteins for assembling ordered nanoparticle arrays. In: Offenhäuser A, Rinaldi R (eds) Nanobioelectronics – for electronics, biology, and medicine. Springer Science + Business Media, Berlin, pp 167–180Google Scholar
  26. 26.
    Egelseer EM, Ilk N, Pum D et al (2010) S-Layers, microbial, biotechnological applications. In: Flickinger MC (ed) The Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 7. John Wiley & Sons Inc, Hoboken, NJ, pp 4424–4448Google Scholar
  27. 27.
    Ilk N, Egelseer EM, Ferner-Ortner J et al (2008) Surfaces functionalized with self-assembling S-layer fusion proteins for nanobiotechnological applications. Colloids Surf A Physicochem Eng Aspects 321:163–167Google Scholar
  28. 28.
    Sára M, Egelseer EM, Huber C et al (2006) S-layer proteins: potential application in nano(bio)technology. In: Bernd Rehm Massey University PN, New Zealand (ed) Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures. Horizon Bioscience. Massey University, Palmerston North, pp 307–338Google Scholar
  29. 29.
    Sleytr UB, Sára M, Pum D (2000) Crystalline bacterial cell surface layers (S-layers): a versatile self-assembly system. In: Ciferri A (ed) Supramolecular polymers. Marcel Dekker, Inc, Basel, pp 177–213Google Scholar
  30. 30.
    Sleytr UB, Sára M, Pum D et al (2001) Molecular nanotechnology and nanobiotechnology with two-dimensional protein crystals (S-layers). In: Rosoff M (ed) Nano-surface chemistry. Marcel Dekker, Inc, Basel, pp 333–389Google Scholar
  31. 31.
    Sleytr UB, Sára M, Pum D et al (2005) Crystalline bacterial cell surface layers (S-layers): a versatile self-assembly system. In: Ciferri A (ed) Supramolecular polymers, 2nd edn. Taylor & Francis Group, Boca Raton, FL, pp 583–612Google Scholar
  32. 32.
    Sleytr UB, Sára M, Pum D et al (2002) Self-assembly protein systems: microbial S-layers. In: Steinbüchel A, Fahnestock SR (eds) Biopolymers. Polyamides and complex proteinaceous materials I. Biopolymers, 1st edn. Wiley-VCH, Weinheim, pp 285–338Google Scholar
  33. 33.
    Schuster B, Sleytr UB (2015) Relevance of glycosylation of S-layer proteins for cell surface properties. Acta Biomater 19:149–157PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sleytr UB, Pum D, Egelseer EM et al (2013) S-layer proteins. In: Knoll W (ed) Handbook of biofunctional surfaces. Pan Stanford Publishing, New York, NY, pp 507–568Google Scholar
  35. 35.
    Benz R, Fröhlich O, Läuger P et al (1975) Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim Biophys Acta 394(3):323–334PubMedGoogle Scholar
  36. 36.
    Hanke W, Schlue W-R (1993) Planar lipid bilayer. Methods and applications biological techniques series. Academic, San Diego, CAGoogle Scholar
  37. 37.
    Winterhalter M (2000) Black lipid membranes. Curr Opin Colloid Interface Sci 5(3–4):250–255Google Scholar
  38. 38.
    Montal M, Darszon A, Schindler H (1981) Functional reassembly of membrane proteins in planar lipid bilayers. Q Rev Biophys 14(1):1–79PubMedGoogle Scholar
  39. 39.
    Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69(12):3561–3566PubMedPubMedCentralGoogle Scholar
  40. 40.
    Messner P, Hollaus F, Sleytr UB (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J Syst Bacteriol 34:202–210Google Scholar
  41. 41.
    Sleytr UB, Sára M, Küpcü Z et al (1986) Structural and chemical characterization of S-layers of selected strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans. Arch Microbiol 146(1):19–24PubMedGoogle Scholar
  42. 42.
    Bartelmus W, Perschak F (1957) Schnellmethode zur Keimzahlbestimmung in der Zuckerindustrie. Z Zuckerind 7:276–281Google Scholar
  43. 43.
    Pum D, Sleytr UB (1995) Anisotropic crystal growth of the S-layer of Bacillus sphaericus CCM 2177 at the air/water interface. Colloids Surf A Physicochem Eng Aspects 102:99–104Google Scholar
  44. 44.
    Pum D, Stangl G, Sponer C et al (1997) Deep UV patterning of monolayers of crystalline S layer protein on silicon surfaces. Colloids Surf B: Biointerfaces 8(3):157–162Google Scholar
  45. 45.
    Pum D, Stangl G, Sponer C et al (1997) Patterning of monolayers of crystalline S-layer proteins on a silicon surface by deep ultraviolet radiation. Microelectron Eng 35(1-4):297–300Google Scholar
  46. 46.
    Brittain S, Paul K, Zhao XM et al (1998) Soft lithography and microfabrication. Phys World 11(5):31–36Google Scholar
  47. 47.
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184Google Scholar
  48. 48.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37(5):550–575Google Scholar
  49. 49.
    Yager P, Afromowitz MA, Bell D et al (1998) Design of microfluidic sample preconditioning systems for detection of biological agents in environmental samples. Proc SPIE 3515:252–259Google Scholar
  50. 50.
    Kumar A, Biebuyck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10(5):1498–1511Google Scholar
  51. 51.
    Li H (2016) Microfabrication techniques for producing freestanding multi-dimensional microstructures. Microsys Technol 22(2):223–237Google Scholar
  52. 52.
    Mrksich M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors? Trends Biotechnol 13(6):228–235Google Scholar
  53. 53.
    Rajagopalan J, Saif MTA (2013) Fabrication of freestanding 1-D PDMS microstructures using capillary micromolding. J Microelectromech Syst 22(5):992–994Google Scholar
  54. 54.
    Györvary E, O’Riordan A, Quinn A et al (2003) Biomimetic nanostructure fabrication: non-lithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports. Nano Lett 3:315–319Google Scholar
  55. 55.
    Boles MA, Engel M, Talapin DV (2016) Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev 116(18):11220–11289PubMedGoogle Scholar
  56. 56.
    Boles MA, Ling D, Hyeon T et al (2016) The surface science of nanocrystals. Nat Mater 15(2):141–153PubMedGoogle Scholar
  57. 57.
    Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal Inorganic nanoparticles. Philos Trans R Soc London, Ser A 368(1915):1333–1383Google Scholar
  58. 58.
    Talapin DV, Rogach AL, Kornowski A et al (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett 1(4):207–211Google Scholar
  59. 59.
    Talapin DV, Rogach AL, Mekis I et al (2002) Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf A Physicochem Eng Aspects 202(2–3):145–154Google Scholar
  60. 60.
    Györvary E, Schroedter A, Talapin DV et al (2004) Formation of nanoparticle arrays on S-layer protein lattices. J Nanosci Nanotechnol 4:115–120PubMedGoogle Scholar
  61. 61.
    Mueller P, Rudin DO, Ti Tien H et al (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194(4832):979–980PubMedGoogle Scholar
  62. 62.
    Mueller P, Rudin DO, Tien HT et al (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution. J Phys Chem 67(2):534–535Google Scholar
  63. 63.
    Schuster B, Györvary E, Pum D et al (2005) Nanotechnology with S-layer proteins. Methods Mol Biol 300:101–123PubMedGoogle Scholar
  64. 64.
    Schuster B, Sleytr UB (2013) Nanotechnology with S-layer proteins. In: Gerrard J (ed) Methods in molecular biology, vol 996. Springer Science + Business Media, New York, NY, pp 153–175Google Scholar
  65. 65.
    Morera FJ, Vargas G, Gonzalez C et al (2007) Ion-channel reconstitution. Methods Mol Biol 400:571–585PubMedGoogle Scholar
  66. 66.
    Schuster B (2005) Biomimetic design of nano-patterned membranes. Nanobiotechnology 1:153–164Google Scholar
  67. 67.
    Schuster B, Sleytr UB (2005) 2D-protein crystals (S-layers) as support for lipid membranes. In: Tien TH, Ottova A (eds) Advances in planar lipid bilayers and liposomes, vol 1. Elsevier Science, Amsterdam, pp 247–293Google Scholar
  68. 68.
    Schuster B, Sleytr UB (2009) Composite S-layer lipid structures. J Struct Biol 168:207–216PubMedPubMedCentralGoogle Scholar
  69. 69.
    Schuster B, Sleytr UB (2014) Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface 11:20140232Google Scholar
  70. 70.
    Sleytr UB, Sára M, Pum D, Schuster B (2001) Characterization and use of crystalline bacterial cell surface layers. Prog Surf Sci 68:231–278Google Scholar
  71. 71.
    Tien HT, Ottova AL (2001) The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes. J Membr Sci 189(1):83–117Google Scholar
  72. 72.
    Tien TH, Ottova-Leitmannova A (2000) Membrane biophysics: as viewed from experimental bilayer lipid membranes. Elsevier, AmsterdamGoogle Scholar
  73. 73.
    Schuster B, Sleytr UB, Diederich A et al (1999) Probing the stability of S-layer-supported planar lipid membranes. Eur Biophys J 28(7):583–590PubMedGoogle Scholar
  74. 74.
    Schuster B, Pum D, Braha O et al (1998) Self-assembled alpha-hemolysin pores in an S-layer-supported lipid bilayer. Biochim Biophys Acta 1370(2):280–288PubMedGoogle Scholar
  75. 75.
    Schuster B, Pum D, Sleytr UB (1998) Voltage clamp studies on S-layer-supported tetraether lipid membranes. Biochim Biophys Acta 1369(1):51–60PubMedGoogle Scholar
  76. 76.
    Schuster B, Sleytr UB (2002) The effect of hydrostatic pressure on S-layer-supported lipid membranes. Biochim Biophys Acta 1563(1-2):29–34PubMedGoogle Scholar
  77. 77.
    Schuster B, Sleytr UB (2002) Single channel recordings of alpha-hemolysin reconstituted in S-layer-supported lipid bilayers. Bioelectrochemistry 55(1-2):5–7PubMedGoogle Scholar
  78. 78.
    Schuster B, Sleytr UB (2009) Tailor-made crystalline structures of truncated S-layer proteins on heteropolysaccharides. Soft Matter 5(2):334–341Google Scholar
  79. 79.
    Gufler PC, Pum D, Sleytr UB et al (2004) Highly robust lipid membranes on crystalline S-layer supports investigated by electrochemical impedance spectroscopy. Biochim Biophys Acta 1661(2):154–165PubMedGoogle Scholar
  80. 80.
    Schuster B, Pum D, Sleytr UB (2008) S-layer stabilized lipid membranes. Biointerphases 3(2):FA3–FA11PubMedPubMedCentralGoogle Scholar
  81. 81.
    Schuster B, Pum D, Sára M et al (2001) S-layer ultrafiltration membranes: a new support for stabilizing functionalized lipid membranes. Langmuir 17:499–503Google Scholar
  82. 82.
    Hirn R, Schuster B, Sleytr UB et al (1999) The effect of S-layer protein adsorption and crystallization on the collective motion of a planar lipid bilayer studied by dynamic light scattering. Biophys J 77(4):2066–2074PubMedPubMedCentralGoogle Scholar
  83. 83.
    Balleza D (2012) Mechanical properties of lipid bilayers and regulation of mechanosensitive function: From biological to biomimetic channels. Channels 6(4):220–233PubMedPubMedCentralGoogle Scholar
  84. 84.
    Booth IR, Edwards MD, Black S et al (2007) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5:431–440PubMedGoogle Scholar
  85. 85.
    Naismith JH, Booth IR (2012) Bacterial mechanosensitive channels-MscS: evolution’s solution to creating sensitivity in function. Annu Rev Biophys 41:157–177PubMedPubMedCentralGoogle Scholar
  86. 86.
    Takahashi K, Matsuda Y, Naruse K (2016) Mechanosensitive ion channels. AIMS Biophys 3(1):63–74Google Scholar
  87. 87.
    Zhang XC, Liu Z, Li J (2016) From membrane tension to channel gating: a principal energy transfer mechanism for mechanosensitive channels. Protein Sci 25(11):1954–1964PubMedPubMedCentralGoogle Scholar
  88. 88.
    Schuster B, Weigert S, Pum D et al (2003) New method for generating tetraether lipid membranes on porous supports. Langmuir 19:2392–2397Google Scholar
  89. 89.
    Malmstadt N, Nash MA, Purnell RF et al (2006) Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett 6(9):1961–1965PubMedGoogle Scholar
  90. 90.
    Eduok U, Faye O, Szpunar J (2017) Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog Org Coatings 111:124–163Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of NanoBiotechnology, Institute for Synthetic BioarchitecturesUniversity of Natural Resources and Life SciencesViennaAustria
  2. 2.Department of NanoBiotechnology, Institute for BiophysicsUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations