Advertisement

Strategies for Increasing Protein Stability

  • Peter G. Chandler
  • Sebastian S. Broendum
  • Blake T. Riley
  • Matthew A. Spence
  • Colin J. Jackson
  • Sheena McGowan
  • Ashley M. BuckleEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2073)

Abstract

The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.

Key words

Protein stability Rational design Consensus design Ancestral reconstruction Semi-rational design Directed evolution 

References

  1. 1.
    Costanzo JA, O’Brien CJ, Tiller K et al (2014) Conformational stability as a design target to control protein aggregation. Protein Eng Des Sel 27:157–167.  https://doi.org/10.1093/protein/gzu008CrossRefGoogle Scholar
  2. 2.
    Goldenzweig A, Fleishman S (2018) Principles of protein stability and their application in computational design. Annu Rev Biochem 87:105–129.  https://doi.org/10.1146/annurev-biochemCrossRefGoogle Scholar
  3. 3.
    Yu H, Huang H (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 32:308–315.  https://doi.org/10.1016/j.biotechadv.2013.10.012CrossRefGoogle Scholar
  4. 4.
    Kim SJ, Lee JA, Joo JC et al (2010) The development of a thermostable CiP (Coprinus cinereus peroxidase) through in silico design. Biotechnol Prog 26:1038–1046.  https://doi.org/10.1002/btpr.408CrossRefGoogle Scholar
  5. 5.
    Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891–903.  https://doi.org/10.1038/nprot.2007.72CrossRefGoogle Scholar
  6. 6.
    Glaser F, Pupko T, Paz I et al (2003) ConSurf: identification of functional regions in proteins by surface mapping of phylogenetic information. Bioinformatics 19:163–164.  https://doi.org/10.1093/bioinformatics/19.1.163CrossRefGoogle Scholar
  7. 7.
    Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387.  https://doi.org/10.1016/S0022-2836(02)00442-4CrossRefGoogle Scholar
  8. 8.
    Liu Y, Kuhlman B (2006) RosettaDesign server for protein design. Nucleic Acids Res 34:235–238.  https://doi.org/10.1093/nar/gkl163CrossRefGoogle Scholar
  9. 9.
    Buß O, Rudat J, Ochsenreither K (2018) FoldX as protein engineering tool: better than random based approaches? Comput Struct Biotechnol J.  https://doi.org/10.1016/j.csbj.2018.01.002
  10. 10.
    Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155.  https://doi.org/10.1021/bi00483a001CrossRefGoogle Scholar
  11. 11.
    Vogt G, Argos P (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2:S40–S46.  https://doi.org/10.1016/S1359-0278(97)00062-XCrossRefGoogle Scholar
  12. 12.
    Moore EJ, Zorine D, Hansen WA et al (2017) Enzyme stabilization via computationally guided protein stapling. Proc Natl Acad Sci U S A 114:12472–12477.  https://doi.org/10.1073/pnas.1708907114CrossRefGoogle Scholar
  13. 13.
    Hodgson DRW, Sanderson JM (2004) The synthesis of peptides and proteins containing non-natural amino acids. Chem Soc Rev 33:422–430.  https://doi.org/10.1039/b312953pCrossRefGoogle Scholar
  14. 14.
    Link AJ, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechnol 14:603–609.  https://doi.org/10.1016/j.copbio.2003.10.011CrossRefGoogle Scholar
  15. 15.
    Eswar N, Webb B, Marti-Renom MA, et al (2006) Comparative protein structure modeling using Modeller Curr Protoc Bioinformatics Chapter 5:Unit-5.6Google Scholar
  16. 16.
    DeLano WL (2002) The PyMOL molecular graphics system. Version 2.0 Schrödinger, LLCGoogle Scholar
  17. 17.
    Aronica PGA, Verma C, Popovic B et al (2016) The Parasol Protocol for computational mutagenesis. Protein Eng Des Sel 29:253–261.  https://doi.org/10.1093/protein/gzw009CrossRefGoogle Scholar
  18. 18.
    Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535.  https://doi.org/10.1038/nprot.2006.204CrossRefGoogle Scholar
  19. 19.
    Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531:100–109.  https://doi.org/10.1016/j.abb.2012.09.008CrossRefGoogle Scholar
  20. 20.
    Matouschek A, Fersht AR (1991) Protein engineering in analysis of protein folding pathways and stability. Methods Enzymol 202:82–112CrossRefGoogle Scholar
  21. 21.
    Porebski BT, Buckle AM (2016) Consensus protein design. Protein Eng Des Sel 29:245–251.  https://doi.org/10.1093/protein/gzw015CrossRefGoogle Scholar
  22. 22.
    Wheeler LC, Lim SA, Marqusee S, Harms MJ (2016) The thermostability and specificity of ancient proteins. Curr Opin Struct Biol 38:37–43.  https://doi.org/10.1016/j.sbi.2016.05.015CrossRefGoogle Scholar
  23. 23.
    Risso VA, Gavira JA, Gaucher EA, Sanchez-Ruiz JM (2014) Phenotypic comparisons of consensus variants versus laboratory resurrections of Precambrian proteins. Proteins 82:887–896.  https://doi.org/10.1002/prot.24575CrossRefGoogle Scholar
  24. 24.
    Do CB, Katoh K (2008) Protein multiple sequence alignment. In: Thompson JD, Ueffing M, Schaeffer-Reiss C (eds) Methods in molecular biology. Humana Press, Totowa, NJ, pp 379–413Google Scholar
  25. 25.
    Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169.  https://doi.org/10.1093/nar/gkw1099CrossRefGoogle Scholar
  26. 26.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2CrossRefGoogle Scholar
  27. 27.
    Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285.  https://doi.org/10.1093/nar/gkv1344CrossRefGoogle Scholar
  28. 28.
    Sigrist CJA, De Castro E, Cerutti L et al (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41:344–347.  https://doi.org/10.1093/nar/gks1067CrossRefGoogle Scholar
  29. 29.
    Wilson D, Pethica R, Zhou Y et al (2009) SUPERFAMILY - sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:380–386.  https://doi.org/10.1093/nar/gkn762CrossRefGoogle Scholar
  30. 30.
    Finn RD, Clements J, Arndt W et al (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30–W38.  https://doi.org/10.1093/nar/gkv397CrossRefGoogle Scholar
  31. 31.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659.  https://doi.org/10.1093/bioinformatics/btl158CrossRefGoogle Scholar
  32. 32.
    Gerlt JA, Bouvier JT, Davidson DB et al (2015) Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim Biophy Acta 1854:1019–1037.  https://doi.org/10.1016/j.bbapap.2015.04.015CrossRefGoogle Scholar
  33. 33.
    Shannon P, Markiel A, Owen O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504.  https://doi.org/10.1101/gr.1239303.metaboliteCrossRefGoogle Scholar
  34. 34.
    Simossis V, Kleinjung J, Heringa J (2003) An overview of multiple sequence alignment. Curr Protoc Bioinformatics.  https://doi.org/10.1002/0471250953.bi0307s03
  35. 35.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340CrossRefGoogle Scholar
  36. 36.
    Di Tommaso P, Moretti S, Xenarios I et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:13–17.  https://doi.org/10.1093/nar/gkr245CrossRefGoogle Scholar
  37. 37.
    Madej T, Lanczycki CJ, Zhang D et al (2014) MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res 42:297–303.  https://doi.org/10.1093/nar/gkt1208CrossRefGoogle Scholar
  38. 38.
    Steipe B, Schiller B, Plückthun A, Steinbacher S (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:188–192CrossRefGoogle Scholar
  39. 39.
    Polizzi KM, Chaparro-Riggers JF, Vazquez-Figueroa E, Bommarius AS (2006) Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnol J 1:531–536.  https://doi.org/10.1002/biot.200600029CrossRefGoogle Scholar
  40. 40.
    Tokuriki N, Stricher F, Schymkowitz J et al (2007) The stability effects of protein mutations appear to be universally distributed. J Mol Biol 369:1318–1332.  https://doi.org/10.1016/j.jmb.2007.03.069CrossRefGoogle Scholar
  41. 41.
    Lehmann M, Wyss M (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 12:371–375.  https://doi.org/10.1016/S0958-1669(00)00229-9CrossRefGoogle Scholar
  42. 42.
    Lehmann M, Pasamontes L, Lassen SF, Wyss M (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta Protein Struct Mol Enzymol 1543:408–415.  https://doi.org/10.1016/S0167-4838(00)00238-7CrossRefGoogle Scholar
  43. 43.
    Porebski BT, Nickson AA, Hoke DE et al (2015) Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain. Protein Eng Des Sel 28:67–78.  https://doi.org/10.1093/protein/gzv002CrossRefGoogle Scholar
  44. 44.
    Porebski BT, Keleher S, Hollins JJ et al (2016) Smoothing a rugged protein folding landscape by sequence-based redesign. Sci Rep 6:1–14.  https://doi.org/10.1038/srep33958CrossRefGoogle Scholar
  45. 45.
    Jacobs SA, Diem MD, Luo J et al (2012) Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng Des Sel 25:107–117.  https://doi.org/10.1093/protein/gzr064CrossRefGoogle Scholar
  46. 46.
    Dai M, Fisher HE, Temirov J et al (2007) The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng Des Sel 20:69–79.  https://doi.org/10.1093/protein/gzl056CrossRefGoogle Scholar
  47. 47.
    Pantoliano MW, Whitlow M, Wood JF et al (1989) Large increases in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding. Biochemistry 28:7205–7213.  https://doi.org/10.1021/bi00444a012CrossRefGoogle Scholar
  48. 48.
    Blatt LM, Davis JM, Klein SB, Taylor MW (1996) The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res 16:489–499CrossRefGoogle Scholar
  49. 49.
    Vazquez-Figueroa E, Yeh V, Broering JM et al (2008) Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Eng Des Sel 21:673–680.  https://doi.org/10.1093/protein/gzn048CrossRefGoogle Scholar
  50. 50.
    Sullivan BJ, Durani V, Magliery TJ (2011) Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J Mol Biol 413:195–208.  https://doi.org/10.1016/j.jmb.2011.08.001CrossRefGoogle Scholar
  51. 51.
    Nikolova PV, Henckel J, Lane DP, Fersht AR (1998) Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci U S A 95:14675–14680.  https://doi.org/10.1073/pnas.95.25.14675CrossRefGoogle Scholar
  52. 52.
    Wang Q, Buckle AM, Foster NW et al (1999) Design of highly stable functional GroEL minichaperones. Protein Sci 8:2186–2193.  https://doi.org/10.1110/ps.8.10.2186CrossRefGoogle Scholar
  53. 53.
    Ferreiro DU, Cervantes CF, Truhlar SME et al (2007) Stabilizing IκBα by “consensus” design. J Mol Biol 365:1201–1216.  https://doi.org/10.1016/j.jmb.2006.11.044CrossRefGoogle Scholar
  54. 54.
    Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–288.  https://doi.org/10.1038/nature01977CrossRefGoogle Scholar
  55. 55.
    Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–707.  https://doi.org/10.1038/nature06510CrossRefGoogle Scholar
  56. 56.
    Clifton BE, Jackson CJ (2016) Ancestral protein reconstruction yields insights into adaptive evolution of binding specificity in solute-binding proteins. Cell Chem Biol 23:236–245.  https://doi.org/10.1016/j.chembiol.2015.12.010CrossRefGoogle Scholar
  57. 57.
    Perez-Jimenez R, Inglés-Prieto A, Zhao Z et al (2011) Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol 18:592–596.  https://doi.org/10.1038/nsmb.2020CrossRefGoogle Scholar
  58. 58.
    Akanuma S (2017) Characterization of reconstructed ancestral proteins suggests a change in temperature of the ancient biosphere. Life 7:33.  https://doi.org/10.3390/life7030033CrossRefGoogle Scholar
  59. 59.
    Williams PD, Pollock DD, Blackburne BP, Goldstein RA (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2:0598–0605.  https://doi.org/10.1371/journal.pcbi.0020069CrossRefGoogle Scholar
  60. 60.
    Zhang J, Nei M (1997) Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J Mol Evol 44:139–146.  https://doi.org/10.1007/PL00000067CrossRefGoogle Scholar
  61. 61.
    Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300CrossRefGoogle Scholar
  62. 62.
    Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589.  https://doi.org/10.1038/nmeth.4285CrossRefGoogle Scholar
  63. 63.
    Rambaut A (2006) FigTree. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtreeGoogle Scholar
  64. 64.
    Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13:303–314.  https://doi.org/10.1038/nrg3186CrossRefGoogle Scholar
  65. 65.
    Anisimova M, Gil M, Dufayard JF et al (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60:685–699.  https://doi.org/10.1093/sysbio/syr041CrossRefGoogle Scholar
  66. 66.
    Minh BQ, Nguyen MAT, Von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195.  https://doi.org/10.1093/molbev/mst024CrossRefGoogle Scholar
  67. 67.
    Joy JB, Liang RH, McCloskey RM et al (2016) Ancestral reconstruction. PLoS Comput Biol 12:1–20.  https://doi.org/10.1371/journal.pcbi.1004763CrossRefGoogle Scholar
  68. 68.
    Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591.  https://doi.org/10.1093/molbev/msm088CrossRefGoogle Scholar
  69. 69.
    Eick GN, Bridgham JT, Anderson DP et al (2017) Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol Biol Evol 34:247–261.  https://doi.org/10.1093/molbev/msw223CrossRefGoogle Scholar
  70. 70.
    Li Z, Yang Y, Zhan J et al (2013) Energy functions in de novo protein design: current challenges and future prospects. Annu Rev Biophys 42:315–335.  https://doi.org/10.1146/annurev-biophys-083012-130315CrossRefGoogle Scholar
  71. 71.
    Dahiyat BI, Sarisky CA, Mayo SL (1997) De novo protein design: towards fully automated sequence selection. J Mol Biol 273:789–796.  https://doi.org/10.1006/jmbi.1997.1341CrossRefGoogle Scholar
  72. 72.
    Liang S, Grishin NV (2004) Effective scoring function for protein sequence design. Proteins 54:271–281CrossRefGoogle Scholar
  73. 73.
    Pokala N, Handel TM (2005) Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J Mol Biol 347:203–227.  https://doi.org/10.1016/j.jmb.2004.12.019CrossRefGoogle Scholar
  74. 74.
    Dai L, Yang Y, Kim HR, Zhou Y (2010) Improving computational protein design by using structure-derived sequence profile. Proteins 78:2338–2348.  https://doi.org/10.1002/prot.22746CrossRefGoogle Scholar
  75. 75.
    Dantas G, Kuhlman B, Callender D et al (2003) A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J Mol Biol 332:449–460.  https://doi.org/10.1016/S0022-2836(03)00888-XCrossRefGoogle Scholar
  76. 76.
    Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308:857–860.  https://doi.org/10.1126/science.1107387CrossRefGoogle Scholar
  77. 77.
    Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43.  https://doi.org/10.1128/MMBR.65.1.1-43.2001CrossRefGoogle Scholar
  78. 78.
    Xiong H, Fenel F, Leisola M, Turunen O (2004) Engineering the thermostability of Trichoderma reesei endo-1,4-β-xylanase II by combination of disulphide bridges. Extremophiles 8:393–400.  https://doi.org/10.1007/s00792-004-0400-9CrossRefGoogle Scholar
  79. 79.
    Kapoor D, Kumar V, Chandrayan SK et al (2008) Replacement of the active surface of a thermophile protein by that of a homologous mesophile protein through structure-guided “protein surface grafting”. Biochim Biophys Acta 1784:1771–1776.  https://doi.org/10.1016/j.bbapap.2008.05.007CrossRefGoogle Scholar
  80. 80.
    Pedone E, Saviano M, Rossi M, Bartolucci S (2001) A single point mutation (Glu85Arg) increases the stability of the thioredoxin from Escherichia coli. Protein Eng 14:255–260.  https://doi.org/10.1093/protein/14.4.255CrossRefGoogle Scholar
  81. 81.
    Vázquez-Figueroa E, Chaparro-Riggers J, Bommarius AS (2007) Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. ChemBioChem 8:2295–2301.  https://doi.org/10.1002/cbic.200700500CrossRefGoogle Scholar
  82. 82.
    Loening AM, Fenn TD, Wu AM, Gambhir SS (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19:391–400.  https://doi.org/10.1093/protein/gzl023CrossRefGoogle Scholar
  83. 83.
    Amin N, Liu AD, Ramer S et al (2004) Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng Des Sel 17:787–793.  https://doi.org/10.1093/protein/gzh091CrossRefGoogle Scholar
  84. 84.
    Anbar M, Gul O, Lamed R et al (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 78:3458–3464.  https://doi.org/10.1128/AEM.07985-11CrossRefGoogle Scholar
  85. 85.
    Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58:1216–1233.  https://doi.org/10.1007/PL00000935CrossRefGoogle Scholar
  86. 86.
    Feldwisch J, Tolmachev V, Lendel C et al (2010) Design of an optimized scaffold for affibody molecules. J Mol Biol 398:232–247.  https://doi.org/10.1016/j.jmb.2010.03.002CrossRefGoogle Scholar
  87. 87.
    Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109:31–44.  https://doi.org/10.1002/bit.23280CrossRefGoogle Scholar
  88. 88.
    Panigrahi P, Sule M, Ghanate A et al (2015) Engineering proteins for thermostability with iRDP web server. PLoS One 10:1–20.  https://doi.org/10.1371/journal.pone.0139486CrossRefGoogle Scholar
  89. 89.
    Bednar D, Beerens K, Sebestova E et al (2015) FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol 11:1–20.  https://doi.org/10.1371/journal.pcbi.1004556CrossRefGoogle Scholar
  90. 90.
    Goldenzweig A, Goldsmith M, Hill SE et al (2016) Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell 63:337–346.  https://doi.org/10.1016/j.molcel.2016.06.012CrossRefGoogle Scholar
  91. 91.
    Mate DM, Gonzalez-perez D, Mateljak I et al (2017) The pocket manual of directed evolution: tips and tricks. Elsevier Inc., AmsterdamCrossRefGoogle Scholar
  92. 92.
    Martinez R, Jakob F, Tu R et al (2013) Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol Bioeng 110:711–720.  https://doi.org/10.1002/bit.24766CrossRefGoogle Scholar
  93. 93.
    Giver L, Gershenson A, Freskgard P-O, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95:12809–12813.  https://doi.org/10.1073/pnas.95.22.12809CrossRefGoogle Scholar
  94. 94.
    Salazar O, Cirino PC, Arnold FH (2003) Thermostabilization of a cytochrome P450 peroxygenase. ChemBioChem 4:891–893.  https://doi.org/10.1002/cbic.200300660CrossRefGoogle Scholar
  95. 95.
    Tokuriki N, Jackson CJ, Afriat-Jurnou L et al (2012) Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat Commun 3:1257–1259.  https://doi.org/10.1038/ncomms2246CrossRefGoogle Scholar
  96. 96.
    Goldsmith M, Tawfik DS (2012) Directed enzyme evolution: beyond the low-hanging fruit. Curr Opin Struct Biol 22:406–412.  https://doi.org/10.1016/j.sbi.2012.03.010CrossRefGoogle Scholar
  97. 97.
    Copp JN, Hanson-Manful P, Ackerley DF, Patrick WM (2014) Error-prone PCR and effective generation of gene variant libraries for directed evolution. Methods Mol Biol 1179:3–22CrossRefGoogle Scholar
  98. 98.
    Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394.  https://doi.org/10.1038/nrg3927CrossRefGoogle Scholar
  99. 99.
    Bendl J, Stourac J, Sebestova E et al (2016) HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Res 44:W479–W487.  https://doi.org/10.1093/nar/gkw416CrossRefGoogle Scholar
  100. 100.
    Wijma HJ, Floor RJ, Jekel PA et al (2014) Computationally designed libraries for rapid enzyme stabilization. Protein Eng Des Sel 27:49–58.  https://doi.org/10.1093/protein/gzt061CrossRefGoogle Scholar
  101. 101.
    Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed 45:7745–7751.  https://doi.org/10.1002/anie.200602795CrossRefGoogle Scholar
  102. 102.
    Leemhuis H, Kelly RM, Dijkhuizen L (2009) Directed evolution of enzymes: library screening strategies. IUBMB Life 61:222–228.  https://doi.org/10.1002/iub.165CrossRefGoogle Scholar
  103. 103.
    Martin A, Schmid FX, Sieber V (2003) Proside: a phage-based method for selecting thermostable proteins. Methods Mol Biol 230:57–70.  https://doi.org/10.1385/1-59259-396-8:57CrossRefGoogle Scholar
  104. 104.
    Foit L, Morgan GJ, Kern MJ et al (2009) Optimizing protein stability in vivo. Mol Cell 36:861–871.  https://doi.org/10.1016/j.molcel.2009.11.022CrossRefGoogle Scholar
  105. 105.
    Magliery TJ, Lavinder JJ, Sullivan BJ (2011) Protein stability by number: high-throughput and statistical approaches to one of protein science’s most difficult problems. Curr Opin Chem Biol 15:443–451.  https://doi.org/10.1016/j.cbpa.2011.03.015CrossRefGoogle Scholar
  106. 106.
    Lindman S, Hernandez-Garcia A, Szczepankiewicz O et al (2010) In vivo protein stabilization based on fragment complementation and a split GFP system. Proc Natl Acad Sci U S A 107:19826–19831.  https://doi.org/10.1073/pnas.1005689107CrossRefGoogle Scholar
  107. 107.
    Seitz T, Thoma R, Schoch GA et al (2010) Enhancing the stability and solubility of the glucocorticoid receptor ligand-binding domain by high-throughput library screening. J Mol Biol 403:562–577.  https://doi.org/10.1016/j.jmb.2010.08.048CrossRefGoogle Scholar
  108. 108.
    Socha RD, Tokuriki N (2013) Modulating protein stability - directed evolution strategies for improved protein function. FEBS J 280(22):5582–5595CrossRefGoogle Scholar
  109. 109.
    Shivange AV, Serwe A, Dennig A et al (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95:405–418.  https://doi.org/10.1007/s00253-011-3756-7CrossRefGoogle Scholar
  110. 110.
    Buettner K, Hertel TC, Pietzsch M (2012) Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Amino Acids 42:987–996.  https://doi.org/10.1007/s00726-011-1015-yCrossRefGoogle Scholar
  111. 111.
    García-Ruiz E, Maté D, Ballesteros A et al (2010) Evolving thermostability in mutant libraries of ligninolytic oxidoreductases expressed in yeast. Microb Cell Factories 9:1–13.  https://doi.org/10.1186/1475-2859-9-17CrossRefGoogle Scholar
  112. 112.
    Xiao H, Bao Z, Zhao H (2015) High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res 54:4011–4020.  https://doi.org/10.1021/ie503060aCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Peter G. Chandler
    • 1
  • Sebastian S. Broendum
    • 1
  • Blake T. Riley
    • 1
  • Matthew A. Spence
    • 1
  • Colin J. Jackson
    • 2
  • Sheena McGowan
    • 3
  • Ashley M. Buckle
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
  2. 2.Research School of ChemistryAustralian National UniversityCanberraAustralia
  3. 3.Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia

Personalised recommendations