Advertisement

DNA Methylation and Transcriptomic Next-Generation Technologies in Cereal Genomics

  • Cynthia G. Soto-Cardinault
  • Fátima Duarte-Aké
  • Clelia De-la-Peña
  • Elsa Góngora-CastilloEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2072)

Abstract

RNA sequencing (RNA-seq) coupled to DNA methylation strategies enables the detection and characterization of genes which expression levels might be mediated by DNA methylation. Here we describe a bioinformatics protocol to analyze gene expression levels using RNA-seq data that allow us to identify candidate genes to be tested by bisulfite assays. The candidate methylated genes are usually those that are low expressed in a particular condition or developmental stage.

Key words

Bioinformatics Bisulfite technique Cereals Genome methylation Transcriptome expression 

Notes

Acknowledgments

The authors work was supported by two grants received from the National Council for Science and Technology (CB2016-285898, CB2016-286368 and INFR-2016-01-269833) and Cátedras Marcos Moshinsky 2017.

References

  1. 1.
    FAO (2019) Cereal supply and demand brief. World food situation. www.fao.org/worldfoodsituation/csdb/en. Accessed 24 Feb 2019
  2. 2.
    International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  3. 3.
    Ohyanagi H (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34:D741–D744CrossRefGoogle Scholar
  4. 4.
    Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR Rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887CrossRefGoogle Scholar
  5. 5.
    Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4CrossRefGoogle Scholar
  6. 6.
    Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefGoogle Scholar
  7. 7.
    Vielle-Calzada J-P, Martínez de la Vega O, Hernández-Guzmán G et al (2009) The Palomero genome suggests metal effects on domestication. Science 326:1078CrossRefGoogle Scholar
  8. 8.
    Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551CrossRefGoogle Scholar
  9. 9.
    McCormick RF, Truong SK, Sreedasyam A et al (2018) The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 93:338–354CrossRefGoogle Scholar
  10. 10.
    Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710CrossRefGoogle Scholar
  11. 11.
    The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  12. 12.
    Schlueter J (2019) The oat genome project. AVENA GENOME. avenagenome.org. Accessed 20 Feb 2019
  13. 13.
    Gupta PK, Varshney RK (eds) (2005) Cereal genomics. Springer, DordrechtGoogle Scholar
  14. 14.
    Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353CrossRefGoogle Scholar
  15. 15.
    Jiao Y, Peluso P, Shi J et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524CrossRefGoogle Scholar
  16. 16.
    Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement: plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9CrossRefGoogle Scholar
  17. 17.
    Visendi P, Batley J, Edwards D (2013) Next generation characterisation of cereal genomes for marker discovery. Biology 2:1357–1377CrossRefGoogle Scholar
  18. 18.
    Rival A, Beulé T, Aberlenc Bertossi F et al (2010) Plant epigenetics: from genomes to epigenomes. Not Bot Hortic Agrobot Cluj-Napoca 38:09–15CrossRefGoogle Scholar
  19. 19.
    Edwards MA, Henry RJ (2011) DNA sequencing methods contributing to new directions in cereal research. J Cereal Sci 54:395–400CrossRefGoogle Scholar
  20. 20.
    Duarte-Aké F, Castillo-Castro E, Pool FB et al (2016) Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process. Plant Cell Rep 35:2489–2502CrossRefGoogle Scholar
  21. 21.
    Lira-Medeiros CF, Parisod C, Fernandes RA et al (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5:e10326CrossRefGoogle Scholar
  22. 22.
    Langdale JA, Taylor WC, Nelson T (1991) Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site >3 kb upstream of the gene. Mol Gen Genet 225:49–55CrossRefGoogle Scholar
  23. 23.
    Mager S, Schönberger B, Ludewig U (2018) The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss. BMC Plant Biol 18:372CrossRefGoogle Scholar
  24. 24.
    Portwood JL, Woodhouse MR, Cannon EK et al (2019) MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res 47:D1146–D1154CrossRefGoogle Scholar
  25. 25.
    Diepenbrock CH, Kandianis CB, Lipka AE et al (2017) Novel loci underlie natural variation in vitamin E levels in maize grain. Plant Cell 29:2374CrossRefGoogle Scholar
  26. 26.
    Atkinson L (2019) Open source initiative. March 2019 license-discuss summary. opensource.org. Accessed 16 Apr 2019
  27. 27.
    SRA Toolkit Development Team SRA-Tools. SRA Toolkit Documentation. ncbi.github.io/sra-tools/. Accessed 14 Feb 2019
  28. 28.
    Andrews S (2010) FastQC. A quality control tool for high throughput sequence data. bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 10 Apr 2018
  29. 29.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  30. 30.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359CrossRefGoogle Scholar
  31. 31.
    Anders S, Pyl PT, Huber W (2015) HTSeq--a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169CrossRefGoogle Scholar
  32. 32.
    R Core Team (2013) R: A language and environment for statistical computing. https://www.r-project.org/. Accessed 2 Feb 2019
  33. 33.
    Góngora-Castillo E, Buell CR (2013) Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence. Nat Prod Rep 30:490–500CrossRefGoogle Scholar
  34. 34.
    Góngora-Castillo E, Fedewa G, Yeo Y et al (2012) Genomic approaches for interrogating the biochemistry of medicinal plant species. Methods Enzymol 517:139–159CrossRefGoogle Scholar
  35. 35.
    Sims D, Sudbery I, Ilott NE et al (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132CrossRefGoogle Scholar
  36. 36.
    Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13.  https://doi.org/10.1186/s13059-016-0881-8CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Andrews S (2016) Loss of base call accuracy with increasing sequencing cycles. https://sequencing.qcfail.com/. Accessed 14 Feb 2019
  38. 38.
    Langmead B, Wilks C, Antonescu V et al (2019) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35:421–432CrossRefGoogle Scholar
  39. 39.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefGoogle Scholar
  40. 40.
    Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50:96CrossRefGoogle Scholar
  41. 41.
    Bullard JH, Purdom E, Hansen KD et al (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94CrossRefGoogle Scholar
  42. 42.
    Dillies M-A, Rau A, Aubert J et al (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14:671–683CrossRefGoogle Scholar
  43. 43.
    Evans C, Hardin J, Stoebel DM (2018) Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Brief Bioinform 19:776–792CrossRefGoogle Scholar
  44. 44.
    StatQuest (2015) RPKM, FPKM and TPM, Clearly explained. https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/. Accessed 20 Feb 2019
  45. 45.
    Wickham H (2016) Elegant graphics for data analysis. In: Springer (ed) ggplot2, 2nd edn. Verlag, New YorkCrossRefGoogle Scholar
  46. 46.
    Zhao S, Guo Y, Sheng Q et al (2014) Advanced heat map and clustering analysis using Heatmap3. Biomed Res Int 2014:986048.  https://doi.org/10.1155/2014/986048CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci 89:1827–1831CrossRefGoogle Scholar
  48. 48.
    Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci U S A 101:3863–3867CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Cynthia G. Soto-Cardinault
    • 1
  • Fátima Duarte-Aké
    • 1
  • Clelia De-la-Peña
    • 1
  • Elsa Góngora-Castillo
    • 2
    Email author
  1. 1.Unidad de Biotecnología, Centro de Investigación Científica de YucatánMéridaMexico
  2. 2.CONACYT-Unidad de BiotecnologíaCentro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations