Advertisement

Cereal Genomics Databases and Plant Genetic Resources in Crop Improvement

  • Robert J. HenryEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2072)

Abstract

Cereal improvement is based upon effective utilization of genetic resources. These include germplasm and genomics data and tools. Cereal germplasm is available from major global seed banks. Wild material remains an additional less well utilized resource. Sourcing of germplasm requires protocols to ensure intellectual property matters are adequately addressed. Advances in genomics technology have made extensive data set available for the cereals. Reference genome sequences, transcriptome resources, and pan genomes are now available for the major cereal species. The use of genomic data is facilitated by the addition of user-friendly interfaces that allow breeders to access the information they need.

Key words

DNA sequences Germplasm Seed banks Gene banks 

References

  1. 1.
    Henry RJ (2017) Plant genetic resources. In: Hunter D, Guarino L, Spillane C, McKeown P (eds) Routledge handbook of agricultural biodiversity. Routledge, London, pp 15–29CrossRefGoogle Scholar
  2. 2.
    Wambugu P, Ndjiondjop M-N, Henry RJ (2018) Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct Genomics 17:198–206CrossRefGoogle Scholar
  3. 3.
    International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191CrossRefGoogle Scholar
  4. 4.
    Wang W, Mauleon R, Hu Z et al (2018) Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 557:43–49CrossRefGoogle Scholar
  5. 5.
    Stein JC, Yu Y, Copetti D et al (2018) Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 50(2):285–296.  https://doi.org/10.1038/s41588-018-0040-0CrossRefPubMedGoogle Scholar
  6. 6.
    Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome confirmation capture ordered sequence of the barley genome. Nature 544:427–436CrossRefGoogle Scholar
  7. 7.
    Jiao Y, Peluso P, Shi J et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527CrossRefGoogle Scholar
  8. 8.
    McCormick RF, Truong SK, Sreedasyam A et al (2018) The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas and signatures of genome organization. Plant J 93:338–354CrossRefGoogle Scholar
  9. 9.
    Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14:1099–1105CrossRefGoogle Scholar
  10. 10.
    Yao W, Li GW, Zhao H et al (2015) Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol 16:187CrossRefGoogle Scholar
  11. 11.
    Zimin AV, Puiu D, Hall R et al (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6:1–7.  https://doi.org/10.1093/gigascience/gix097CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Luo MC, Gu YQ, Puiu D et al (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502CrossRefGoogle Scholar
  13. 13.
    Alaux M, Rogers J, Letellier T et al (2018) Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19:111CrossRefGoogle Scholar
  14. 14.
    Rangan P, Furtado A, Henry RJ (2017) The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat. BMC Genomics 18:766CrossRefGoogle Scholar
  15. 15.
    Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4CrossRefGoogle Scholar
  16. 16.
    Zhao Q, Fen Q, Lu H et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284CrossRefGoogle Scholar
  17. 17.
    Gutierrez-Gonzalez JJ, Tu ZJ, Gravin DF (2013) Analysis and annotation of the hexaploid oat seed transcriptome. BMC Genomics 14:471CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia

Personalised recommendations