Emerging Genome Engineering Tools in Crop Research and Breeding

  • Andriy Bilichak
  • Daniel Gaudet
  • John Laurie
Part of the Methods in Molecular Biology book series (MIMB, volume 2072)


Recent advances in genome engineering are revolutionizing crop research and plant breeding. The ability to make specific modifications to a plant’s genetic material creates opportunities for rapid development of elite cultivars with desired traits. The plant genome can be altered in several ways, including targeted introduction of nucleotide changes, deleting DNA segments, introducing exogenous DNA fragments and epigenetic modifications. Targeted changes are mediated by sequence specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspersed short palindromic repeats)-Cas (CRISPR associated protein) systems. Recent advances in engineering chimeric Cas nucleases fused to base editing enzymes permit for even greater precision in base editing and control over gene expression. In addition to gene editing technologies, improvement in delivery systems of exogenous DNA into plant cells have increased the rate of successful gene editing events. Regeneration of fertile plants containing the desired edits remains challenging; however, manipulation of embryogenesis-related genes such as BABY BOOM (BBM) has been shown to facilitate regeneration through tissue culture, often a major hurdle in recalcitrant cultivars. Epigenome reprogramming for improved crop performance is another possibility for future breeders, with recent studies on MutS HOMOLOG 1 (MSH1) demonstrating epigenetic-dependent hybrid vigor in several crops. While these technologies offer plant breeders new tools in creating high yielding, better adapted crop varieties, constantly evolving government policy regarding the cultivation of plants containing transgenes may impede the widespread adoption of some of these techniques. This chapter summarizes advances in genome editing tools and discusses the future of these techniques for crop improvement.

Key words

Genome editing Sequence specific nucleases CRISPR/Cas9 BABY BOOM Epigenome editing 


  1. 1.
    Bibikova M, Beumer K, Trautman JK et al (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764PubMedGoogle Scholar
  2. 2.
    Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48:173–182PubMedGoogle Scholar
  3. 3.
    Sakuma T, Woltjen K (2014) Nuclease-mediated genome editing: at the front-line of functional genomics technology. Develop Growth Differ 56:2–13Google Scholar
  4. 4.
    Zhang Y, Zhang F, Li X, Baller JA et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27PubMedGoogle Scholar
  5. 5.
    Terada R, Urawa H, Inagaki Y et al (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034PubMedGoogle Scholar
  6. 6.
    Hanin M, Volrath S, Bogucki A et al (2001) Gene targeting in Arabidopsis. Plant J 28:671–677PubMedGoogle Scholar
  7. 7.
    Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350PubMedGoogle Scholar
  8. 8.
    Choulika A, Perrin A, Dujon B et al (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cohen-Tannoudji M, Robine S, Choulika A et al (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol 18:1444–1448PubMedPubMedCentralGoogle Scholar
  10. 10.
    Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21:5034–5040PubMedPubMedCentralGoogle Scholar
  11. 11.
    Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93:5055–5060PubMedPubMedCentralGoogle Scholar
  12. 12.
    Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12:1006–1014PubMedGoogle Scholar
  14. 14.
    Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400PubMedGoogle Scholar
  15. 15.
    Heidmann I, de Lange B, Lambalk J et al (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30:1107–1115PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lowe K, Wu E, Wang N et al (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedPubMedCentralGoogle Scholar
  18. 18.
    Enuameh MS, Asriyan Y, Richards A et al (2013) Global analysis of Drosophila Cys(2)-His(2) zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res 23:928–940PubMedPubMedCentralGoogle Scholar
  19. 19.
    Persikov AV, Wetzel JL, Rowland EF et al (2015) A systematic survey of the Cys2His2 zinc finger DNA-binding landscape. Nucleic Acids Res 43:1965–1984PubMedPubMedCentralGoogle Scholar
  20. 20.
    Orlando SJ, Santiago Y, DeKelver RC et al (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38:e152PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedGoogle Scholar
  22. 22.
    Curtin SJ, Zhang F, Sander JD et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ainley WM, Sastry-Dent L, Welter ME et al (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134PubMedGoogle Scholar
  24. 24.
    Eudes A, Liang Y, Mitra P et al (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198PubMedGoogle Scholar
  25. 25.
    Weeks DP (2017) Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus. Prog Mol Biol Transl Sci 149:65–80PubMedGoogle Scholar
  26. 26.
    Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401PubMedGoogle Scholar
  28. 28.
    Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372PubMedGoogle Scholar
  29. 29.
    Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedGoogle Scholar
  30. 30.
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501PubMedGoogle Scholar
  31. 31.
    Haun W, Coffman A, Clasen BM et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940PubMedGoogle Scholar
  32. 32.
    Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951PubMedGoogle Scholar
  33. 33.
    Wendt T, Holm P, Starker C et al (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedGoogle Scholar
  34. 34.
    Lor VS, Starker CG, Voytas DF et al (2014) Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 166:1288–1291PubMedPubMedCentralGoogle Scholar
  35. 35.
    Clasen BM, Stoddard TJ, Luo S et al (2015) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 2016(14):169–176Google Scholar
  36. 36.
    Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1:169–182Google Scholar
  37. 37.
    Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedPubMedCentralGoogle Scholar
  38. 38.
    Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512PubMedGoogle Scholar
  39. 39.
    Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832PubMedPubMedCentralGoogle Scholar
  40. 40.
    Qi Lei S, Larson Matthew H, Gilbert Luke A et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183PubMedPubMedCentralGoogle Scholar
  41. 41.
    Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52PubMedGoogle Scholar
  42. 42.
    Shmakov S, Smargon A, Scott D et al (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15:169–182PubMedPubMedCentralGoogle Scholar
  43. 43.
    Zetsche B, Gootenberg Jonathan S et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedPubMedCentralGoogle Scholar
  44. 44.
    Tang X, Lowder LG, Zhang T et al (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018PubMedGoogle Scholar
  45. 45.
    Wang M, Mao Y, Lu Y et al (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013PubMedGoogle Scholar
  46. 46.
    Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985PubMedPubMedCentralGoogle Scholar
  47. 47.
    Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedGoogle Scholar
  48. 48.
    Wang F, Wang C, Liu P et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027PubMedPubMedCentralGoogle Scholar
  49. 49.
    Blanvillain-Baufume S, Reschke M, Sole M et al (2017) Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J 15:306–317PubMedGoogle Scholar
  50. 50.
    Zhou H, Liu B, Weeks DP et al (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914PubMedPubMedCentralGoogle Scholar
  51. 51.
    Li J, Meng XB, Zong Y et al (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139PubMedGoogle Scholar
  52. 52.
    Wang MG, Lu YM, Botella JR et al (2017) Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant 10:1007–1010PubMedGoogle Scholar
  53. 53.
    Nekrasov V, Wang C, Win J et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482PubMedPubMedCentralGoogle Scholar
  54. 54.
    de Toledo Thomazella DP, Brail Q, Dahlbeck D, et al (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv 064824Google Scholar
  55. 55.
    Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153PubMedPubMedCentralGoogle Scholar
  56. 56.
    Lemmon ZH, Reem NT, Dalrymple J et al (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770PubMedGoogle Scholar
  57. 57.
    Zsogon A, Cermak T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216Google Scholar
  58. 58.
    Li TD, Yang XP, Yu Y et al (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163Google Scholar
  59. 59.
    Cermak T, Baltes NJ, Cegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232PubMedPubMedCentralGoogle Scholar
  60. 60.
    Sun YW, Zhang X, Wu CY et al (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631PubMedGoogle Scholar
  61. 61.
    Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945PubMedPubMedCentralGoogle Scholar
  62. 62.
    Shimatani Z, Nishizawa-Yokoi A et al (2014) Positive-negative-selection-mediated gene targeting in rice. Front Plant Sci 5:748PubMedGoogle Scholar
  63. 63.
    Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826PubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhang Q, Xing HL, Wang ZP et al (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96:445–456PubMedPubMedCentralGoogle Scholar
  65. 65.
    Fujii W, Kawasaki K, Sugiura K et al (2013) Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res 41:e187PubMedPubMedCentralGoogle Scholar
  66. 66.
    Pattanayak V, Lin S, Guilinger JP et al (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843PubMedPubMedCentralGoogle Scholar
  67. 67.
    Hahn F, Nekrasov V (2018) CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Rep 38:437–441PubMedPubMedCentralGoogle Scholar
  68. 68.
    Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011PubMedPubMedCentralGoogle Scholar
  69. 69.
    Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926PubMedGoogle Scholar
  70. 70.
    Kang BC, Yun JY, Kim ST et al (2018) Precision genome engineering through adenine base editing in plants. Nat Plants 4:427–431PubMedGoogle Scholar
  71. 71.
    Li C, Zong Y, Wang YP et al (2018) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:59PubMedPubMedCentralGoogle Scholar
  72. 72.
    Zong Y, Wang YP, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440PubMedGoogle Scholar
  73. 73.
    Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443PubMedGoogle Scholar
  74. 74.
    Lowder LG, Zhang DW, Baltes NJ et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985PubMedPubMedCentralGoogle Scholar
  75. 75.
    Piatek A, Ali Z, Baazim H et al (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589PubMedGoogle Scholar
  76. 76.
    Lowder LG, Zhou JP, Zhang YX et al (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-act systems. Mol Plant 11:245–256PubMedGoogle Scholar
  77. 77.
    Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164PubMedGoogle Scholar
  78. 78.
    Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617PubMedPubMedCentralGoogle Scholar
  79. 79.
    Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261PubMedPubMedCentralGoogle Scholar
  80. 80.
    Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274PubMedPubMedCentralGoogle Scholar
  81. 81.
    Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384PubMedGoogle Scholar
  82. 82.
    Malnoy M, Viola R, Jung MH et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904PubMedPubMedCentralGoogle Scholar
  83. 83.
    Bilichak A, Luu J, Eudes F (2015) Intracellular delivery of fluorescent protein into viable wheat microspores using cationic peptides. Front Plant Sci 6:666PubMedPubMedCentralGoogle Scholar
  84. 84.
    Meinke DW, Franzmann LH, Nickle TC et al (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064PubMedPubMedCentralGoogle Scholar
  85. 85.
    West M, Yee KM, Danao J et al (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745PubMedPubMedCentralGoogle Scholar
  86. 86.
    Ogas J, Kaufmann S, Henderson J et al (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844PubMedGoogle Scholar
  87. 87.
    Hecht V, Vielle-Calzada JP, Hartog MV et al (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816PubMedPubMedCentralGoogle Scholar
  88. 88.
    Heck GR, Perry SE, Nichols KW et al (1995) Agl15, a Mads domain protein expressed in developing embryos. Plant Cell 7:1271–1282PubMedPubMedCentralGoogle Scholar
  89. 89.
    Gazzarrini S, Tsuchiya Y, Lumba S et al (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385PubMedGoogle Scholar
  90. 90.
    Elhiti M, Tahir M, Gulden RH et al (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085PubMedPubMedCentralGoogle Scholar
  91. 91.
    Zuo JR, Niu QW, Frugis G et al (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359PubMedGoogle Scholar
  92. 92.
    Boutilier K, Offringa R, Sharma VK et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedPubMedCentralGoogle Scholar
  93. 93.
    Horstman A, Li MF, Heidmann I et al (2017) The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol 175:848–857PubMedPubMedCentralGoogle Scholar
  94. 94.
    Lowe K, La Rota M, Hoerster G et al (2018) Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant 54:240–252PubMedPubMedCentralGoogle Scholar
  95. 95.
    Mookkan M, Nelson-Vasilchik K, Hague J et al (2017) Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36:1477–1491PubMedPubMedCentralGoogle Scholar
  96. 96.
    Khanday I, Skinner D, Yang B et al (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95PubMedGoogle Scholar
  97. 97.
    Bilichak A, Luu J, Jiang F et al (2018) Identification of BABY BOOM homolog in bread wheat. Agri Gene 7:43–51Google Scholar
  98. 98.
    Ou X, Zhang Y, Xu C et al (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS One 7:e41143PubMedPubMedCentralGoogle Scholar
  99. 99.
    Abdelnoor RV, Yule R, Elo A et al (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973PubMedGoogle Scholar
  100. 100.
    Xu YZ, Arrieta-Montiel MP, Virdi KS et al (2011) MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light. Plant Cell 23:3428–3441PubMedPubMedCentralGoogle Scholar
  101. 101.
    Santamaria RD, Shao MR, Wang GM et al (2014) MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor. PLoS One 9:e108407Google Scholar
  102. 102.
    Virdi KS, Laurie JD, Xu YZ et al (2015) Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat Commun 6:6386PubMedPubMedCentralGoogle Scholar
  103. 103.
    Yang XD, Kundariya H, Xu YZ et al (2015) MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiol 168:222–U390PubMedPubMedCentralGoogle Scholar
  104. 104.
    Raju SKK, Shao MR, Sanchez R et al (2018) An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J 16:1836–1847PubMedPubMedCentralGoogle Scholar
  105. 105.
    Gallego-Bartolome J, Gardiner J, Liu WL et al (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci USA 115:E2125–E2134PubMedGoogle Scholar
  106. 106.
    Papikian A, Liu WL, Gallego-Bartolome J et al (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:729PubMedPubMedCentralGoogle Scholar
  107. 107.
    Morita S, Noguchi H, Horii T et al (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34:1060–1065PubMedGoogle Scholar
  108. 108.
    Hofmeister BT, Lee K, Rohr NA et al (2017) Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 18:155PubMedPubMedCentralGoogle Scholar
  109. 109.
    Niederhuth CE, Schmitz RJ (2014) Covering your bases: inheritance of DNA methylation in plant genomes. Mol Plant 7:472–480PubMedGoogle Scholar
  110. 110.
    Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51:1–8PubMedPubMedCentralGoogle Scholar
  111. 111.
    Duensing N, Sprink T, Parrott WA et al (2018) Novel features and considerations for ERA and regulation of crops produced by genome editing. Front Bioeng Biotechnol 6:79PubMedPubMedCentralGoogle Scholar
  112. 112.
    Smyth SJ (2017) Canadian regulatory perspectives on genome engineered crops. GM Crops Food 8:35–43PubMedGoogle Scholar
  113. 113.
    Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Andriy Bilichak
    • 1
  • Daniel Gaudet
    • 2
  • John Laurie
    • 3
  1. 1.Morden Research and Development CenterAgriculture and Agri-Food CanadaMordenCanada
  2. 2.The University of LethbridgeLethbridgeCanada
  3. 3.Agriculture and Agri-Food CanadaLethbridgeCanada

Personalised recommendations