Assays to Evaluate Toxoplasma–Macrophage Interactions

  • Debanjan Mukhopadhyay
  • Jeroen P. J. SaeijEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2071)


The obligate intracellular protozoan parasite Toxoplasma gondii can infect any nucleated cell from a warm-blooded host. However, its interaction with host macrophages plays a critical role in shaping the immune response during infection. Therefore, assessing Toxoplasma–macrophage interactions at a cellular level is important. In this chapter, we describe assays that can be used to characterize Toxoplasma–macrophage interactions. These assays can also be used to evaluate other host–pathogen interactions. We describe multiplex approaches for measuring arginase activity, indoleamine 2,3 dioxygenase activity, cell death, and parasite growth during Toxoplasma–macrophage interactions. These assays can be used to compare how different Toxoplasma strains differ in their interaction with macrophages, and we describe how to properly assess Toxoplasma strain differences in Toxoplasma–macrophage interactions.

Key words

Arginase GRA15 IDO Inflammasome LDH Macrophage Macrophage polarization MTS ROP16 Toxoplasma 


  1. 1.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. Scholar
  2. 2.
    Hassan MA, Jensen KD, Butty V, Hu K, Boedec E, Prins P et al (2015) Transcriptional and linkage analyses identify loci that mediate the differential macrophage response to inflammatory stimuli and infection. PLoS Genet 11(10):1–25CrossRefGoogle Scholar
  3. 3.
    Sibley LD, Adams LB, Fukutomi Y, Krahenbuhl JL (1991) Tumor necrosis factor-alpha triggers antitoxoplasmal activity of IFN-gamma primed macrophages. J Immunol 147(7):2340–2345. Scholar
  4. 4.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. Scholar
  5. 5.
    Pappas G, Roussos N, Falagas ME (2009) Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol 39(12):1385–1394. Scholar
  6. 6.
    Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS, Hadjithomas M et al (2016) Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun 7:10147CrossRefGoogle Scholar
  7. 7.
    Saeij JPJ, Boyle JP, Boothroyd JC (2005) Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol 21(10):476–481CrossRefGoogle Scholar
  8. 8.
    Jensen KDC, Wang Y, Wojno EDT, Shastri AJ, Hu K, Cornel L et al (2011) Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 9(6):472–483. Scholar
  9. 9.
    Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KDC et al (2011) Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med 208(1):195–212. Scholar
  10. 10.
    Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, Yarovinsky F et al (2011) Toxoplasma gondii rhoptry kinase rop16 activates stat3 and stat6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog 7(9):e1002236CrossRefGoogle Scholar
  11. 11.
    Braun L, Brenier-Pinchart M-P, Yogavel M, Curt-Varesano A, Curt-Bertini R-L, Hussain T et al (2013) A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J Exp Med 210(10):2071–2086. Scholar
  12. 12.
    Hurley JC, Tosolini FA, Louis WJ (1991) Quantitative limulus lysate assay for endotoxin and the effect of plasma. J Clin Pathol 44(10):849–854CrossRefGoogle Scholar
  13. 13.
    Davies JQ, Gordon S (2005) Isolation and culture of murine macrophages. Methods Mol Biol 290:91–103PubMedGoogle Scholar
  14. 14.
    Krishnamurthy S, Konstantinou EK, Young LH, Gold DA, Saeij JPJ (2017) The human immune response to Toxoplasma: autophagy versus cell death. PLoS Pathog 13(3):1–6CrossRefGoogle Scholar
  15. 15.
    Boyle JP, Saeij JPJ, Boothroyd JC (2007) Toxoplasma gondii: inconsistent dissemination patterns following oral infection in mice. Exp Parasitol 116(3):302–305CrossRefGoogle Scholar
  16. 16.
    Buttke TM, McCubrey JA, Owen TC (1993) Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 157(1–2):233–240CrossRefGoogle Scholar
  17. 17.
    Cirelli KM, Gorfu G, Hassan MA, Printz M, Crown D, Leppla SH et al (2014) Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii. PLoS Pathog 10(3):e1003927CrossRefGoogle Scholar
  18. 18.
    Saeij JP, Frickel EM (2017) Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death. Curr Opin Microbiol 40:72–80CrossRefGoogle Scholar
  19. 19.
    Pfefferkorn ER, Guyre PM (1984) Inhibition of growth of Toxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon. Infect Immun 44(2):211–216PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sica A et al (2012) Mphage_M1-M2_rev_JCI2012. J Clin Invest 122(3):787–795CrossRefGoogle Scholar
  21. 21.
    Iaconetti E, Lynch B, Kim N, Mordue DG (2012) Determination of Toxoplasma gondii replication in naïve and activated macrophages. Bio Protocol 2(22):e289. Scholar
  22. 22.
    Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420CrossRefGoogle Scholar
  23. 23.
    Niedelman W, Sprokholt JK, Clough B, Frickel EM, Saeij JPJ (2013) Cell death of gamma interferon-stimulated human fibroblasts upon Toxoplasma gondii infection induces early parasite egress and limits parasite replication. Infect Immun 81(12):4341–4349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pathology, Microbiology and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUSA

Personalised recommendations