Methods for Evaluation of a Snake Venom-Derived Disintegrin in Animal Models of Human Cancer

  • Stephen D. Swenson
  • Catalina Silva-Hirschberg
  • Francis S. MarklandEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2068)


Integrin targeting has been shown to be an effective approach for anticancer therapy. We engineered a recombinant disintegrin, vicrostatin (VCN), that binds with high affinity and specificity to the Arg-Gly-Asp (RGD) class of integrins, including αvβ3, αvβ5, and α5β1, involved in tumor invasion and metastasis. We used three different delivery modalities to examine anticancer activity of VCN in mouse models of human ovarian cancer, glioma, and prostate cancer. A female mouse model was used to examine the treatment of established ovarian cancer (OC) using VCN delivered intraperitoneally (IP) weekly either in saline or impregnated in a viscoelastic gel. SKOV3luc cells (a human OC cell line) were directly injected IP into immunodeficient mice. We also examined the antitumor activity of radioiodinated VCN delivered intravenously in a human glioma model in nude mice. We evaluated the effectiveness of 131I-VCN in combination with the DNA alkylating agent temozolomide in limiting glioma growth. Finally, treatment of a bone metastatic model of human prostate cancer (PC) in immunodeficient mice was examined using a liposomal formulation of VCN (LVCN) delivered intravenously. Human PC cells were suspended in a solution of Matrigel and injected into the left tibia of immunodeficient mice. Diameters of both the left and right (control) tibias were measured by caliper repeatedly after VCN treatment was initiated.

Key words

Ovarian cancer Glioma Prostate cancer Integrins Disintegrins Animal models 


  1. 1.
    Varga-Szabo D, Pleines I, Nieswandt B (2008) Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28(3):403–412PubMedCrossRefGoogle Scholar
  2. 2.
    Gould RJ, Polokoff MA, Friedman PA et al (1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exptl Biol Med 195(2):168–171CrossRefGoogle Scholar
  3. 3.
    Swenson S, Ramu S, Markland FS (2007) Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr Pharm Des 13(28):2860–2871PubMedCrossRefGoogle Scholar
  4. 4.
    McLane MA, Joerger T, Mahmoud A (2008) Disintegrins in health and disease. Front Biosci 13:6617–6637PubMedCrossRefGoogle Scholar
  5. 5.
    Saudek V, Atkinson RA, Pelton JT (1991) Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 30:7369–7372PubMedCrossRefGoogle Scholar
  6. 6.
    Moiseeva N, Bau R, Swenson SD et al (2008) Structure of acostatin, a dimeric disintegrin from Southern copperhead (Agkistrodon contortrix contortrix), at 1.7 A resolution. Acta Crystallogr D Biol Crystallogr 64(Pt 4):466–470PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Askari JA, Buckley PA, Mould AP et al (2009) Linking integrin conformation to function. J Cell Sci 122(Pt 2):165–170PubMedCrossRefGoogle Scholar
  8. 8.
    Shebuski RJ, Ramjit DR, Bencen GH et al (1989) Characterization and platelet inhibitory activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper Bitis arietans. J Biol Chem 264(36):21550–21556PubMedGoogle Scholar
  9. 9.
    Yasuda T, Gold HK, Leinbach RC et al (1991) Kistrin, a polypeptide platelet GPIIb/IIIa receptor antagonist, enhances and sustains coronary arterial thrombolysis with recombinant tissue-type plasminogen activator in a canine preparation. Circulation 83(3):1038–1047PubMedCrossRefGoogle Scholar
  10. 10.
    Cousins GR, Sudo Y, Friedrichs GR et al (1995) Contortrostatin prevents reocclusion after thrombolytic therapy in a canine model of carotid artery thrombosis. FASEB J 9:A938Google Scholar
  11. 11.
    Minea RO, Helchowski CM, Zidovetzki SJ et al (2010) Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities. PLoS One 5(6):e10929PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Minea R, Helchowski C, Rubino B et al (2012) Development of a chimeric recombinant disintegrin as a cost-effective anti-cancer agent with promising translational potential. Toxicon 59(4):472–486PubMedCrossRefGoogle Scholar
  13. 13.
    Slack-Davis JK, Parsons JT (2004) Emerging views of integrin signaling: implications for prostate cancer. J Cell Biochem 91(1):41–46PubMedCrossRefGoogle Scholar
  14. 14.
    Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25PubMedCrossRefGoogle Scholar
  15. 15.
    Pignatelli M, Cardillo MR, Hanby A et al (1992) Integrins and their accessory adhesion molecules in mammary carcinomas: loss of polarization in poorly differentiated tumors. Hum Pathol 23:1159–1166PubMedCrossRefGoogle Scholar
  16. 16.
    Ruoslahti E (1991) Integrins. J Clin Invest 87(1):1–5PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cheresh DA (1992) Structural and biologic properties of integrin-mediated cell adhesion. Clin Lab Med 12:217–236PubMedCrossRefGoogle Scholar
  18. 18.
    Cooper CR, Chay CH, Pienta KJ (2002) The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 4(3):191–194PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Goel HL, Li J, Kogan S et al (2008) Integrins in prostate cancer progression. Endocr Relat Cancer 15(3):657–664PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Israel I, Richter D, Stritzker J et al (2014) PET imaging with [(6)(8)Ga]NOTA-RGD for prostate cancer: a comparative study with [(1)(8)F]fluorodeoxyglucose and [(1)(8)F]fluoroethylcholine. Curr Cancer Drug Targets 14(4):371–379PubMedCrossRefGoogle Scholar
  21. 21.
    Kumar CC (2003) Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4(2):123–131PubMedCrossRefGoogle Scholar
  22. 22.
    Stucci S, Tucci M, Passarelli A et al (2015) Avbeta3 integrin: Pathogenetic role in osteotropic tumors. Crit Rev Oncol Hematol 96(1):183–193PubMedCrossRefGoogle Scholar
  23. 23.
    Kwakwa KA, Sterling JA (2017) Integrin alphavbeta3 Signaling in Tumor-Induced Bone Disease. Cancers 9:7CrossRefGoogle Scholar
  24. 24.
    Juan-Rivera MC, Martinez-Ferrer M (2018) Integrin Inhibitors in Prostate Cancer. Cancers 10(2):PMC5836076Google Scholar
  25. 25.
    Sheldrake HM, Patterson LH (2014) Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem 57(15):6301–6315PubMedCrossRefGoogle Scholar
  26. 26.
    Lin E, Wang Q, Swenson S et al (2010) The disintegrin contortrostatin in combination with docetaxel is a potent inhibitor of prostate cancer in vitro and in vivo. Prostate 70(12):1359–1370PubMedGoogle Scholar
  27. 27.
    Markland FS, Swenson S, Minea R (2016) A novel, non-cytotoxic, anti-invasive therapeutic agent for ovarian cancer. In: Proceedings of the 2016 International Conference on Biomedical and Biological Engineering [BBE2016]. Atlantis Press, pp 159–165Google Scholar
  28. 28.
    Pyrko P, Wang W, Markland FS et al (2005) The role of contortrostatin, a snake venom disintegrin, in the inhibition of tumor progression and prolongation of survival in a rodent glioma model. J Neurosurg 103(3):526–537PubMedCrossRefGoogle Scholar
  29. 29.
    Curt GA (1994) The use of animal models in cancer drug discovery and development. Stem Cells 12(1):23–29PubMedCrossRefGoogle Scholar
  30. 30.
    Ruggeri BA, Camp F, Miknyoczki S (2014) Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 87(1):150–161PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investig New Drugs 17(4):343–359CrossRefGoogle Scholar
  32. 32.
    Day CP, Merlino G, Van Dyke T (2015) Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163(1):39–53PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Siegel RL, Miller KD, Jemal A (2019) Cancer Statistics, 2019. CA Cancer J Clin 69(1):7–34PubMedCrossRefGoogle Scholar
  34. 34.
    Sodek KL, Ringuette MJ, Brown TJ (2009) Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int J Cancer 124(9):2060–2070PubMedCrossRefGoogle Scholar
  35. 35.
    Davidson B (2007) Biological characteristics of cancers involving the serosal cavities. Crit Rev Oncog 13(3):189–227PubMedCrossRefGoogle Scholar
  36. 36.
    Jaaback K, Johnson N, Lawrie TA (2011) Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev 11:CD005340Google Scholar
  37. 37.
    Zeimet AG, Reimer D, Radl AC et al (2009) Pros and cons of intraperitoneal chemotherapy in the treatment of epithelial ovarian cancer. Anticancer Res 29(7):2803–2808PubMedGoogle Scholar
  38. 38.
    Armstrong DK, Bundy B, Wenzel L et al (2006) Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 354(1):34–43PubMedCrossRefGoogle Scholar
  39. 39.
    Vergote I, Amant F, Leunen K et al (2008) Intraperitoneal chemotherapy in patients with advanced ovarian cancer: the con view. Oncologist 13(4):410–414PubMedCrossRefGoogle Scholar
  40. 40.
    Mackay HJ, Provencheur D, Heywood M et al (2011) Phase ii/iii study of intraperitoneal chemotherapy after neoadjuvant chemotherapy for ovarian cancer: ncic ctg ov.21. Curr Oncol 18(2):84–90PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Walker JL, Armstrong DK, Huang HQ et al (2006) Intraperitoneal catheter outcomes in a phase III trial of intravenous versus intraperitoneal chemotherapy in optimal stage III ovarian and primary peritoneal cancer: a Gynecologic Oncology Group Study. Gynecol Oncol 100(1):27–32PubMedCrossRefGoogle Scholar
  42. 42.
    Markman M, Walker JL (2006) Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. J Clin Oncol 24(6):988–994PubMedCrossRefGoogle Scholar
  43. 43.
    Wright AA, Cronin A, Milne DE et al (2015) Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer. J Clin Oncol 33(26):2841-2847Google Scholar
  44. 44.
    Gross S, Piwnica-Worms D (2005) Monitoring proteasome activity in cellulo and in living animals by bioluminescent imaging: technical considerations for design and use of genetically encoded reporters. Methods Enzymol 399:512–530PubMedCrossRefGoogle Scholar
  45. 45.
    Gourley C, Paige AJ, Taylor KJ et al (2009) WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin alpha3. Cancer Res 69(11):4835–4842PubMedCrossRefGoogle Scholar
  46. 46.
    Park YA, Lee JW, Kim HS et al (2014) Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 20(3):565–575PubMedCrossRefGoogle Scholar
  47. 47.
    Wen W, Liang W, Wu J et al (2014) Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer. Mol Cancer Ther 13(12):3037–3048PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bilandzic M, Stenvers KL (2014) Assessment of ovarian cancer spheroid attachment and invasion of mesothelial cells in real time. J Vis Exp (87), e51655Google Scholar
  49. 49.
    Kaderali Z, Lamberti-Pasculli M, Rutka JT (2009) The changing epidemiology of paediatric brain tumours: a review from the Hospital for Sick Children. Childs Nerv Syst 25(7):787–793PubMedCrossRefGoogle Scholar
  50. 50.
    De Prada I, Cordobes F, Azorin D et al (2006) Pediatric giant cell glioblastoma: a case report and review of the literature. Childs Nerv Syst 22(3):285–289PubMedCrossRefGoogle Scholar
  51. 51.
    Remer S, Murphy ME (2004) The challenges of long-term treatment outcomes in adults with malignant gliomas. Clin J Oncol Nurs 8(4):368–376PubMedCrossRefGoogle Scholar
  52. 52.
    Beer AJ, Haubner R, Sarbia M et al (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12(13):3942–3949PubMedCrossRefGoogle Scholar
  53. 53.
    Tabatabai G, Weller M, Nabors B et al (2010) Targeting integrins in malignant glioma. Target Oncol 5(3):175–181PubMedCrossRefGoogle Scholar
  54. 54.
    Chamberlain MC, Cloughsey T, Reardon DA et al (2012) A novel treatment for glioblastoma: integrin inhibition. Expert Rev Neurother 12(4):421–435PubMedCrossRefGoogle Scholar
  55. 55.
    Lund EL, Spang-Thomsen M, Skovgaard-Poulsen H et al (1998) Tumor angiogenesis--a new therapeutic target in gliomas. Acta Neurol Scand 97(1):52–62PubMedCrossRefGoogle Scholar
  56. 56.
    Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49(2):189–195. discussion 196PubMedCrossRefGoogle Scholar
  57. 57.
    Abdollahi A, Lipson KE, Sckell A et al (2003) Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res 63(24):8890–8898PubMedGoogle Scholar
  58. 58.
    Reardon DA, Nabors LB, Stupp R et al (2008) Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs 17(8):1225–1235PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Oliveira-Ferrer L, Hauschild J, Fiedler W et al (2008) Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res 27:86PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Farber K, Synowitz M, Zahn G et al (2008) An alpha5beta1 integrin inhibitor attenuates glioma growth. Mol Cell Neurosci 39(4):579–585PubMedCrossRefGoogle Scholar
  61. 61.
    Calderwood DA (2004) Talin controls integrin activation. Biochem Soc Trans 32(Pt3):434–437PubMedCrossRefGoogle Scholar
  62. 62.
    Swenson S, Costa F, Minea R et al (2004) Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol Cancer Ther 3(4):499–511PubMedGoogle Scholar
  63. 63.
    Riva P, Arista A, Sturiale C et al (1994) Glioblastoma therapy by direct intralesional administration of I-131 radioiodine labeled antitenascin antibodies. Cell Biophys 24-25:37–43PubMedCrossRefGoogle Scholar
  64. 64.
    Reardon DA, Akabani G, Coleman RE et al (2006) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24(1):115–122PubMedCrossRefGoogle Scholar
  65. 65.
    Akabani G, Reardon DA, Coleman RE et al (2005) Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study. J Nucl Med 46(6):1042–1051PubMedGoogle Scholar
  66. 66.
    Reardon DA, Zalutsky MR, Akabani G et al (2008) A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro-Oncology 10(2):182–189PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hunter WM, Greenwood FC (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194:495–496PubMedCrossRefGoogle Scholar
  68. 68.
    American Cancer Society (2018) Cancer facts and figures 2018:21–23Google Scholar
  69. 69.
    Crawford ED, Eisenberger MA, McLeod DG et al (1989) A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 321(7):419–424PubMedCrossRefGoogle Scholar
  70. 70.
    Ross RW, Xie W, Regan MM et al (2008) Efficacy of androgen deprivation therapy (ADT) in patients with advanced prostate cancer: association between Gleason score, prostate-specific antigen level, and prior ADT exposure with duration of ADT effect. Cancer 112(6):1247–1253PubMedCrossRefGoogle Scholar
  71. 71.
    Stanbrough M, Bubley GJ, Ross K et al (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66(5):2815–2825PubMedCrossRefGoogle Scholar
  72. 72.
    Scher HI, Fizazi K, Saad F et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367(13):1187–1197PubMedCrossRefGoogle Scholar
  73. 73.
    Ryan CJ, Smith MR, de Bono JS et al (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368(2):138–148PubMedCrossRefGoogle Scholar
  74. 74.
    Ryan CJ, Smith MR, Fizazi K et al (2015) Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 16(2):152–160PubMedCrossRefGoogle Scholar
  75. 75.
    Kini RM (2011) Toxins in thrombosis and haemostasis: potential beyond imagination. J Thromb Haemost 9(Suppl 1):195–208PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Stephen D. Swenson
    • 1
    • 2
  • Catalina Silva-Hirschberg
    • 3
    • 4
  • Francis S. Markland
    • 1
    • 5
    Email author
  1. 1.Department of Biochemistry and Molecular Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Primary Speciality Center San LazaroSantiagoUSA
  5. 5.Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations