Advertisement

Metabolomic and Proteomic Techniques for Establishing Biomarkers and Improving Our Understanding of Pathophysiology in Diabetic Nephropathy

  • Justyna Siwy
  • Linda Ahonen
  • Pedro Magalhães
  • Maria Frantzi
  • Peter RossingEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2067)

Abstract

Molecular studies of the proteome and metabolome in readily available body fluids such as urine and blood performed in a comprehensive qualitative and quantitative way are a valuable source of information for kidney disease research. They provide potential biomarkers of disease progression, markers of efficacy of interventions, as well as information on the underlying pathophysiology. Identified proteins and metabolites may point to dysregulated biological pathways and this knowledge may be useful in the identification of new treatment targets.

Many studies, focusing on chronic kidney disease as well as diabetic nephropathy, demonstrate that peptidome and metabolome analysis can substantially contribute to early detection and prediction of disease progression, but also stratification of kidney disease in clinical practice. An innovative, well-explored application of urinary peptidome analysis is the back-translation of results obtained in humans to animals, for animal model validation and improvement of the preclinical readouts. In this chapter, we provide an overview of urinary proteomic analysis with the CE-MS analytical platform, a strategy that has been successfully employed in several studies for the identification and validation of biomarkers in kidney diseases. We describe how to obtain the orthology between the animal model and humans. We also deliver an overview of the analysis of the metabolome with the GC×GC-TOF-MS and UHPLC-Q-TOF-MS analytical platforms for blood and serum as new methods being applied in kidney disease.

It is expected that a systems medicine approach to kidney disease including multiple omics methods will provide us with the best way to understand and treat diabetic kidney disease in the future.

Key words

Capillary electrophoresis Mass spectrometry Urine Rodent Clinical proteomics Peptidomics 

References

  1. 1.
    van der Kloet FM et al (2012) Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics 8(1):109–119PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Liu X et al (2015) A systematic review of metabolite profiling in diabetic nephropathy. J Endocrinol Diab 2(3):1–11Google Scholar
  3. 3.
    Darshi M, Van Espen B, Sharma K (2016) Metabolomics in diabetic kidney disease: unraveling the biochemistry of a silent killer. Am J Nephrol 44(2):92–103PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pena MJ et al (2014) Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with type 2 diabetes mellitus. Diabet Med 31(9):1138–1147PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sharma K et al (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24(11):1901–1912PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Niewczas MA et al (2017) Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care 40(3):383PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mischak H et al (2015) Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 11(4):221–232PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lacroix C et al (2014) Label-free quantitative urinary proteomics identifies the arginase pathway as a new player in congenital obstructive nephropathy. Mol Cell Proteomics 13(12):3421–3434PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Klein J et al (2016) Urinary peptidomics provides a noninvasive humanized readout of diabetic nephropathy in mice. Kidney Int 90(5):1045–1055PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Good DM et al (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9(11):2424–2437PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Siwy J et al (2012) Evaluation of the Zucker Diabetic Fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles. PLoS One 7(12):e51334PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nkuipou-Kenfack E et al (2017) The use of urinary proteomics in the assessment of suitability of mouse models for ageing. PLoS One 12(2):e0166875PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pontillo C et al (2015) CE-MS-based proteomics in biomarker discovery and clinical application. Proteomics Clin Appl 9(3-4):322–334PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mischak H, Vlahou A, Ioannidis JP (2013) Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem 46(6):432–443PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Albalat A et al (2013) Urinary proteomics based on capillary electrophoresis coupled to mass spectrometry in kidney disease. Methods Mol Biol 919:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(1):155–171PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Naz S et al (2014) Method validation strategies involved in non-targeted metabolomics. J Chromatogr A 1353:99–105PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sana TR et al (2008) Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech 19(4):258–266PubMedPubMedCentralGoogle Scholar
  20. 20.
    Draper J et al (2009) Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour rules. BMC Bioinformatics 10(1):227PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7(1):234PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chen C et al (2008) Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 283(8):4543–4559PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Viant MR, Rosenblum ES, Tjeerdema RS (2003) NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol 37(21):4982–4989PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lundström SL et al (2011) Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure. PLoS One 6(8):e23864PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Pan Z, Raftery D (2007) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 387(2):525–527PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Favretto D et al (2012) Cord blood metabolomic profiling in intrauterine growth restriction. Anal Bioanal Chem 402(3):1109–1121PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ciborowski M et al (2012) Metabolomics with LC-QTOF-MS permits the prediction of disease stage in aortic abdominal aneurysm based on plasma metabolic fingerprint. PLoS One 7(2):e31982PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    O’Gorman A et al (2017) Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Transl Psychiatry 7:e1240PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Luukkonen PK et al (2017) Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. J Hepatol 67(1):128–136PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rodrigues CM et al (2007) Metabolic fingerprinting using direct flow injection electrospray ionization tandem mass spectrometry for the characterization of proanthocyanidins from the barks of Hancornia speciosa. Rapid Commun Mass Spectrom 21(12):1907–1914PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sarafian MH et al (2014) Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography–mass spectrometry. Anal Chem 86(12):5766–5774PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Want EJ et al (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78(3):743–752PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bruce SJ et al (2008) Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: from extraction to data analysis. Anal Biochem 372(2):237–249PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Tulipani S et al (2013) Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more. Anal Chem 85(1):341–348PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bruce SJ et al (2009) Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem 81(9):3285–3296PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Suvitaival T et al (2016) Serum metabolite profile associates with the development of metabolic co-morbidities in first-episode psychosis. Transl Psychiatry 6:e951PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Castillo S et al (2011) Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal Chem 83(8):3058–3067PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Neuhoff N et al (2004) Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 18(2):149–156PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jantos-Siwy J et al (2009) Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res 8(1):268–281PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Theodorescu D et al (2006) Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol 7(3):230–240PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Dakna M et al (2010) Addressing the challenge of defining valid proteomic biomarkers and classifiers. BMC Bioinformatics 11:594PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zurbig P et al (2006) Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 27(11):2111–2125PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Magalhaes P et al (2017) Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep 7(1):16915PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pejchinovski M et al (2018) Urine peptidomic biomarkers for diagnosis of patients with systematic lupus erythematosus. Lupus 27(1):6–16PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Rossing K et al (2016) Urinary proteomics pilot study for biomarker discovery and diagnosis in heart failure with reduced ejection fraction. PLoS One 11(6):e0157167PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhang ZY et al (2017) Novel urinary peptidomic classifier predicts incident heart failure. J Am Heart Assoc 6(8):e005432PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Albalat A, Mischak H, Mullen W (2011) Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics 8(5):615–629PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Klein J et al (2014) Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 35(7):1060–1064PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mischak H et al (2009) Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev 28(5):703–724PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Nkuipou-Kenfack E, Zurbig P, Mischak H (2017) The long path towards implementation of clinical proteomics: exemplified based on CKD273. Proteomics Clin Appl 11(5-6).  https://doi.org/10.1002/prca.201600104CrossRefGoogle Scholar
  51. 51.
    Zurbig P et al (2012) Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61(12):3304–3313PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Van JA, Scholey JW, Konvalinka A (2017) Insights into diabetic kidney disease using urinary proteomics and bioinformatics. J Am Soc Nephrol 28(4):1050–1061PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Justyna Siwy
    • 1
  • Linda Ahonen
    • 2
  • Pedro Magalhães
    • 1
    • 3
  • Maria Frantzi
    • 1
  • Peter Rossing
    • 2
    • 4
    Email author
  1. 1.Mosaiques Diagnostics GmbHHannoverGermany
  2. 2.Steno Diabetes Center CopenhagenGentofteDenmark
  3. 3.Department of Pediatric NephrologyHannover Medical SchoolHannoverGermany
  4. 4.Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations