Advertisement

Genetic Strategies to Understand Human Diabetic Nephropathy: In Silico Strategies for Molecular Data—Association Studies

  • Marisa Canadas-Garre
  • Laura J. Smyth
  • Kerry Anderson
  • Katie Kerr
  • Amy Jayne McKnightEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2067)

Abstract

Multiple genetic strategies are available to help improve understanding of diabetic nephropathy. This chapter provides detailed methodology for a single-nucleotide polymorphism association study and meta-analysis, using a protocol suitable for targeted SNP or genome-wide association studies, to identify genetic risk factors for diabetic nephropathy.

Key words

Association Diabetic nephropathy Genome-wide Imputation Meta-analysis Plink RAREMETAL Rvtests SNP Trend 

References

  1. 1.
    McKnight AJ, Duffy S, Maxwell AP (2015) Genetics of diabetic nephropathy: a long road of discovery. Curr Diab Rep 15(7):41.  https://doi.org/10.1007/s11892-015-0610-9CrossRefGoogle Scholar
  2. 2.
    Chan Y, Lim ET, Sandholm N, Wang SR, McKnight AJ, Ripke S, Consortium D, Consortium G, Consortium G, Consortium I, Consortium PGC, Daly MJ, Neale BM, Salem RM, Hirschhorn JN (2014) An excess of risk-increasing low-frequency variants can be a signal of polygenic inheritance in complex diseases. Am J Hum Genet 94(3):437–452.  https://doi.org/10.1016/j.ajhg.2014.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Germain M, Pezzolesi MG, Sandholm N, McKnight AJ, Susztak K, Lajer M, Forsblom C, Marre M, Parving HH, Rossing P, Toppila I, Skupien J, Roussel R, Ko YA, Ledo N, Folkersen L, Civelek M, Maxwell AP, Tregouet DA, Groop PH, Tarnow L, Hadjadj S (2015) SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia 58(3):543–548.  https://doi.org/10.1007/s00125-014-3459-6CrossRefGoogle Scholar
  4. 4.
    Sandholm N, Forsblom C, Makinen VP, McKnight AJ, Osterholm AM, He B, Harjutsalo V, Lithovius R, Gordin D, Parkkonen M, Saraheimo M, Thorn LM, Tolonen N, Waden J, Tuomilehto J, Lajer M, Ahlqvist E, Mollsten A, Marcovecchio ML, Cooper J, Dunger D, Paterson AD, Zerbini G, Groop L, Consortium S, Tarnow L, Maxwell AP, Tryggvason K, Groop PH, FinnDiane Study G (2014) Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia 57(6):1143–1153.  https://doi.org/10.1007/s00125-014-3202-3CrossRefGoogle Scholar
  5. 5.
    Sandholm N, McKnight AJ, Salem RM, Brennan EP, Forsblom C, Harjutsalo V, Makinen VP, McKay GJ, Sadlier DM, Williams WW, Martin F, Panduru NM, Tarnow L, Tuomilehto J, Tryggvason K, Zerbini G, Comeau ME, Langefeld CD, Consortium F, Godson C, Hirschhorn JN, Maxwell AP, Florez JC, Groop PH, FinnDiane Study Group and the GENIE Consortium (2013) Chromosome 2q31.1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol 24(10):1537–1543.  https://doi.org/10.1681/ASN.2012111122CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, McKay GJ, Williams WW, Sadlier DM, Makinen VP, Swan EJ, Palmer C, Boright AP, Ahlqvist E, Deshmukh HA, Keller BJ, Huang H, Ahola AJ, Fagerholm E, Gordin D, Harjutsalo V, He B, Heikkila O, Hietala K, Kyto J, Lahermo P, Lehto M, Lithovius R, Osterholm AM, Parkkonen M, Pitkaniemi J, Rosengard-Barlund M, Saraheimo M, Sarti C, Soderlund J, Soro-Paavonen A, Syreeni A, Thorn LM, Tikkanen H, Tolonen N, Tryggvason K, Tuomilehto J, Waden J, Gill GV, Prior S, Guiducci C, Mirel DB, Taylor A, Hosseini SM, Group DER, Parving HH, Rossing P, Tarnow L, Ladenvall C, Alhenc-Gelas F, Lefebvre P, Rigalleau V, Roussel R, Tregouet DA, Maestroni A, Maestroni S, Falhammar H, Gu T, Mollsten A, Cimponeriu D, Ioana M, Mota M, Mota E, Serafinceanu C, Stavarachi M, Hanson RL, Nelson RG, Kretzler M, Colhoun HM, Panduru NM, Gu HF, Brismar K, Zerbini G, Hadjadj S, Marre M, Groop L, Lajer M, Bull SB, Waggott D, Paterson AD, Savage DA, Bain SC, Martin F, Hirschhorn JN, Godson C, Florez JC, Groop PH, Maxwell AP (2012) New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 8(9):e1002921.  https://doi.org/10.1371/journal.pgen.1002921CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sandholm N, Van Zuydam N, Ahlqvist E, Juliusdottir T, Deshmukh HA, Rayner NW, Di Camillo B, Forsblom C, Fadista J, Ziemek D, Salem RM, Hiraki LT, Pezzolesi M, Tregouet D, Dahlstrom E, Valo E, Oskolkov N, Ladenvall C, Marcovecchio ML, Cooper J, Sambo F, Malovini A, Manfrini M, McKnight AJ, Lajer M, Harjutsalo V, Gordin D, Parkkonen M, FinnDiane Study Group JT, Lyssenko V, McKeigue PM, Rich SS, Brosnan MJ, Fauman E, Bellazzi R, Rossing P, Hadjadj S, Krolewski A, Paterson AD, Dcct/Edic Study Group JCF, Hirschhorn JN, Maxwell AP, Genie Consortium DD, Cobelli C, Colhoun HM, Groop L, McCarthy MI, Groop PH, Consortium S (2017) The genetic landscape of renal complications in type 1 diabetes. J Am Soc Nephrol 28(2):557–574.  https://doi.org/10.1681/ASN.2016020231CrossRefGoogle Scholar
  8. 8.
    Todd JN, Dahlstrom EH, Salem RM, Sandholm N, Forsblom C, FinnDiane Study G, McKnight AJ, Maxwell AP, Brennan E, Sadlier D, Godson C, Groop PH, Hirschhorn JN, Florez JC (2015) Genetic evidence for a causal role of obesity in diabetic kidney disease. Diabetes 64(12):4238–4246.  https://doi.org/10.2337/db15-0254CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van Zuydam NR, Ahlqvist E, Sandholm N, Deshmukh H, Rayner NW, Abdalla M, Ladenvall C, Ziemek D, Fauman E, Robertson NR, McKeigue PM, Valo E, Forsblom C, Harjutsalo V, Finnish Diabetic Nephropathy S, Perna A, Rurali E, Marcovecchio ML, Igo RP Jr, Salem RM, Perico N, Lajer M, Karajamaki A, Imamura M, Kubo M, Takahashi A, Sim X, Liu J, van Dam RM, Jiang G, Tam CHT, Luk AOY, Lee HM, Lim CKP, Szeto CC, So WY, Chan JCN, Hong Kong Diabetes Registry Theme-based Research Scheme Project G, Ang SF, Dorajoo R, Wang L, Clara TSH, McKnight AJ, Duffy S, Warren, Genetics of Kidneys in Diabetes Study G, Pezzolesi MG, Consortium G, Marre M, Gyorgy B, Hadjadj S, Hiraki LT, Diabetes C, Complications Trial/Epidemiology of Diabetes I, Complications Research G, Ahluwalia TS, Almgren P, Schulz CA, Orho-Melander M, Linneberg A, Christensen C, Witte DR, Grarup N, Brandslund I, Melander O, Paterson AD, Tregouet D, Maxwell AP, Lim SC, Ma RCW, Tai ES, Maeda S, Lyssenko V, Tuomi T, Krolewski AS, Rich SS, Hirschhorn JN, Florez JC, Dunger D, Pedersen O, Hansen T, Rossing P, Remuzzi G, Micro SUmf, Macrovascular hard endpoints for Innovative diabetes Tools C, Brosnan MJ, Palmer CNA, Groop PH, Colhoun HM, Groop LC, McCarthy MI (2018) A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67(7):1414–1427.  https://doi.org/10.2337/db17-0914CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Williams WW, Salem RM, McKnight AJ, Sandholm N, Forsblom C, Taylor A, Guiducci C, McAteer JB, McKay GJ, Isakova T, Brennan EP, Sadlier DM, Palmer C, Soderlund J, Fagerholm E, Harjutsalo V, Lithovius R, Gordin D, Hietala K, Kyto J, Parkkonen M, Rosengard-Barlund M, Thorn L, Syreeni A, Tolonen N, Saraheimo M, Waden J, Pitkaniemi J, Sarti C, Tuomilehto J, Tryggvason K, Osterholm AM, He B, Bain S, Martin F, Godson C, Hirschhorn JN, Maxwell AP, Groop PH, Florez JC, Consortium G (2012) Association testing of previously reported variants in a large case-control meta-analysis of diabetic nephropathy. Diabetes 61(8):2187–2194.  https://doi.org/10.2337/db11-0751CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Iyengar SK, Sedor JR, Freedman BI, Kao WH, Kretzler M, Keller BJ, Abboud HE, Adler SG, Best LG, Bowden DW, Burlock A, Chen YD, Cole SA, Comeau ME, Curtis JM, Divers J, Drechsler C, Duggirala R, Elston RC, Guo X, Huang H, Hoffmann MM, Howard BV, Ipp E, Kimmel PL, Klag MJ, Knowler WC, Kohn OF, Leak TS, Leehey DJ, Li M, Malhotra A, Marz W, Nair V, Nelson RG, Nicholas SB, O’Brien SJ, Pahl MV, Parekh RS, Pezzolesi MG, Rasooly RS, Rotimi CN, Rotter JI, Schelling JR, Seldin MF, Shah VO, Smiles AM, Smith MW, Taylor KD, Thameem F, Thornley-Brown DP, Truitt BJ, Wanner C, Weil EJ, Winkler CA, Zager PG, Igo RP Jr, Hanson RL, Langefeld CD, Family Investigation of N, Diabetes (2015) Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: family investigation of nephropathy and diabetes (FIND). PLoS Genet 11(8):e1005352.  https://doi.org/10.1371/journal.pgen.1005352CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7.  https://doi.org/10.1186/s13742-015-0047-8CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575.  https://doi.org/10.1086/519795CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ (2016) RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32(9):1423–1426.  https://doi.org/10.1093/bioinformatics/btw079CrossRefPubMedGoogle Scholar
  15. 15.
    Feng S, Liu D, Zhan X, Wing MK, Abecasis GR (2014) RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics 30(19):2828–2829.  https://doi.org/10.1093/bioinformatics/btu367CrossRefPubMedGoogle Scholar
  16. 16.
    Copenhagen: The Nordic Cochrane Centre TCC (2014) Review Manager (RevMan). 5 ednGoogle Scholar
  17. 17.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560.  https://doi.org/10.1136/bmj.327.7414.557CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nedovic D, Panic N, Pastorino R, Ricciardi W, Boccia S (2016) Evaluation of the endorsement of the strengthening the reporting of genetic association studies (STREGA) statement on the reporting quality of published genetic association studies. J Epidemiol 26(8):399–404.  https://doi.org/10.2188/jea.JE20150173CrossRefPubMedGoogle Scholar
  19. 19.
    von Elm E, Moher D, Little J, Collaboration S (2009) Reporting genetic association studies: the STREGA statement. Lancet 374(9684):98–100.  https://doi.org/10.1016/S0140-6736(09)61265-4CrossRefGoogle Scholar
  20. 20.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefGoogle Scholar
  21. 21.
    Sohani ZN, Meyre D, de Souza RJ, Joseph PG, Gandhi M, Dennis BB, Norman G, Anand SS (2015) Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool. BMC Genet 16:50.  https://doi.org/10.1186/s12863-015-0211-2CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Marisa Canadas-Garre
    • 1
  • Laura J. Smyth
    • 1
  • Kerry Anderson
    • 1
  • Katie Kerr
    • 1
  • Amy Jayne McKnight
    • 1
    Email author
  1. 1.Centre for Public Health, Queen’s University BelfastNorthern IrelandUK

Personalised recommendations