Enzymatic Analysis of Reconstituted Archaeal Exosomes

  • Elena Evguenieva-HackenbergEmail author
  • A. Susann Gauernack
  • Linlin Hou
  • Gabriele KlugEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2062)


The archaeal exosome is a protein complex with phosphorolytic activity. It is built of a catalytically active hexameric ring containing the archaeal Rrp41 and Rrp42 proteins, and a heteromeric RNA-binding platform. The platform contains a heterotrimer of the archaeal Rrp4 and Csl4 proteins (which harbor S1 and KH or Zn-ribbon RNA binding domains), and comprises additional archaea-specific subunits. The latter are represented by the archaeal DnaG protein, which harbors a novel RNA-binding domain and tightly interacts with the majority of the exosome isoforms, and Nop5, known as a part of an rRNA methylating complex and found to associate with the archaeal exosome at late stationary phase. Although in the cell the archaeal exosome exists in different isoforms with heterotrimeric Rrp4-Csl4-caps, in vitro it is possible to reconstitute complexes with defined, homotrimeric caps and to study the impact of each RNA-binding subunit on exoribonucleolytic degradation and on polynucleotidylation of RNA. Here we describe procedures for reconstitution of isoforms of the Sulfolobus solfataricus exosome and for set-up of RNA degradation and polyadenylation assays.

Key words

Archaeal exosome In vitro transcription Protein complex Complex reconstitution RNA-binding protein RNA degradation RNA polyadenylation Sulfolobus 


  1. 1.
    Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-5′ exoribonucleases. Cell 91:457–466CrossRefGoogle Scholar
  2. 2.
    Allmang C et al (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399–5410CrossRefGoogle Scholar
  3. 3.
    Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539CrossRefGoogle Scholar
  4. 4.
    Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237; Erratum in: Cell (2007) 131:188–189CrossRefGoogle Scholar
  5. 5.
    Dziembowski A, Lorentzen E, Conti E, Séraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22CrossRefGoogle Scholar
  6. 6.
    Schaeffer D et al (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16:56–62CrossRefGoogle Scholar
  7. 7.
    Koonin EV, Wolf YI, Aravind L (2001) Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 11:240–252CrossRefGoogle Scholar
  8. 8.
    Evguenieva-Hackenberg E, Hou L, Glaeser S, Klug G (2014) Structure and function of the archaeal exosome. Wiley Interdiscip Rev RNA 5:623–635CrossRefGoogle Scholar
  9. 9.
    Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G (2003) An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4:889–893CrossRefGoogle Scholar
  10. 10.
    Lorentzen E et al (2005) The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12:575–581CrossRefGoogle Scholar
  11. 11.
    Büttner K, Wenig K, Hopfner KP (2005) Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20:461–471CrossRefGoogle Scholar
  12. 12.
    Walter P et al (2006) Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 62:1076–1089CrossRefGoogle Scholar
  13. 13.
    Witharana C, Roppelt V, Lochnit G, Klug G, Evguenieva-Hackenberg E (2012) Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus. Biochimie 94:1578–1587CrossRefGoogle Scholar
  14. 14.
    Ramos CR, Oliveira CL, Torriani IL, Oliveira CC (2006) The Pyrococcus exosome complex: structural and functional characterization. J Biol Chem 281:6751–6759CrossRefGoogle Scholar
  15. 15.
    Navarro MV, Oliveira CC, Zanchin NI, Guimarães BG (2008) Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem 283:14120–14131CrossRefGoogle Scholar
  16. 16.
    Audin MJ, Wurm JP, Cvetkovic MA, Sprangers R (2016) The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res 44:2962–2973CrossRefGoogle Scholar
  17. 17.
    Lorentzen E, Dziembowski A, Lindner D, Seraphin B, Conti E (2007) RNA channelling by the archaeal exosome. EMBO Rep 8:470–476CrossRefGoogle Scholar
  18. 18.
    Evguenieva-Hackenberg E, Roppelt V, Finsterseifer P, Klug G (2008) Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome. Biochemistry 47:13158–13168CrossRefGoogle Scholar
  19. 19.
    Luz JS et al (2010) Identification of archaeal proteins that affect the exosome function in vitro. BMC Biochem 11:22CrossRefGoogle Scholar
  20. 20.
    Lu C, Ding F, Ke A (2010) Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS One 5:e8739CrossRefGoogle Scholar
  21. 21.
    Cvetkovic MA, Wurm JP, Audin MJ, Schütz S, Sprangers R (2017) The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol 13:522–528CrossRefGoogle Scholar
  22. 22.
    Roppelt V, Klug G, Evguenieva-Hackenberg E (2010) The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome. FEBS Lett 584:2931–2936CrossRefGoogle Scholar
  23. 23.
    Hou L, Klug G, Evguenieva-Hackenberg E (2013) The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs. RNA Biol 10:415–424CrossRefGoogle Scholar
  24. 24.
    Hou L, Klug G, Evguenieva-Hackenberg E (2014) Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome. Nucleic Acids Res 42:12691–12706CrossRefGoogle Scholar
  25. 25.
    Märtens B et al (2017) The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Res 45:7938–7949CrossRefGoogle Scholar
  26. 26.
    Gauernack AS et al (2017) Nop5 interacts with the archaeal RNA exosome. FEBS Lett 591:4039–4048CrossRefGoogle Scholar
  27. 27.
    Portnoy V et al (2005) RNA polyadenylation in archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 6:1188–1193CrossRefGoogle Scholar
  28. 28.
    Portnoy V, Schuster G (2006) RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 34:5923–5931CrossRefGoogle Scholar
  29. 29.
    Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G (2008) Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim Biophys Acta 1779:247–1755CrossRefGoogle Scholar
  30. 30.
    Mohanty BK, Kushner SR (2000) Polynucleotide phosphorylase functions both as a 3′ right-arrow 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 97:11966–11971CrossRefGoogle Scholar
  31. 31.
    Andrade JM, Hajnsdorf E, Régnier P, Arraiano CM (2009) The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 15:316–326CrossRefGoogle Scholar
  32. 32.
    Mohanty BK, Kushner SR (2011) Bacterial/archaeal/organellar polyadenylation. Wiley Interdiscip Rev 2:256–276CrossRefGoogle Scholar
  33. 33.
    Lorentzen E, Conti E (2008) Expression, reconstitution, and structure of an archaeal RNA degrading exosome. Methods Enzymol 447:417–435CrossRefGoogle Scholar
  34. 34.
    Zuo Z, Rodgers CJ, Mikheikin AL, Trakselis MA (2010) Characterization of a functional DnaG-type primase in archaea: implications for a dual-primase system. J Mol Biol 397:664–676CrossRefGoogle Scholar
  35. 35.
    Evguenieva-Hackenberg E, Wagner S, Klug G (2008) In vivo and in vitro studies of RNA degrading activities in Archaea. Methods Enzymol 447:381–416CrossRefGoogle Scholar
  36. 36.
    Roppelt V (2011) Die Untersuchung der physiologischen Rolle der Exosom-Untereinheiten Rrp4, Csl4 und DnaG aus Sulfolobus solfataricus. Dissertation, University of Giessen, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute for Microbiology and Molecular BiologyJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations