Advertisement

Whole-Mount Immunolocalization Procedure for Plant Female Meiocytes

  • Santiago Valentín Galvan Gordillo
  • Rocio Escobar-Guzman
  • Daniel Rodriguez-Leal
  • Jean-Philippe Vielle-Calzada
  • Arnaud RonceretEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2061)

Abstract

Here we present an optimized protocol for immunolocalization of meiotic proteins during female meiosis in whole mount tissues. It ensures ovule morphology integrity and homogeneous reagent penetration. The method relies on paraformaldehyde tissue fixation, polyacrylamide embedding, tissue permeabilization, antibody incubation, counterstaining, and confocal microscopy analysis. This protocol has been used in diverse Arabidopsis ecotypes and in the legume Vigna unguiculata.

Key words

Confocal microscopy Female meiosis Immunolocalization Plant Whole-mount 

Notes

Acknowledgments

We thank Angelica Martinez-Navarro for schematic drawings and Patricia Rueda for technical assistance; the work was supported by DGAPA PAPIIT IA201217 and IBT-UNAM Grant: p228.

References

  1. 1.
    Wilson ZA, Yang C (2004) Plant gametogenesis: conservation and contrasts in development. Reproduction 128(5):483–492.  https://doi.org/10.1530/rep.1.00306CrossRefPubMedGoogle Scholar
  2. 2.
    Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142(2):229–241.  https://doi.org/10.1242/dev.102103CrossRefPubMedGoogle Scholar
  3. 3.
    Motamayor JC, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M, Bechtold N, Pelletier G, Horlow C (2000) Switch (swi1) an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reproduction 12((4)):209–218.  https://doi.org/10.1007/s004970050002CrossRefGoogle Scholar
  4. 4.
    Chen C, Marcus A, Li W, Hu Y, Vielle-Calzada JP, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–2409CrossRefGoogle Scholar
  5. 5.
    Lenormand T, Dutheil J (2005) Recombination difference between sexes: a role for haploid selection. PLoS Biol 3(3):e63.  https://doi.org/10.1371/journal.pbio.0030063CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Drouaud J, Mercier R, Chelysheva L, Berard A, Falque M, Martin O, Zanni V, Brunel D, Mezard C (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet 3(6):e106.  https://doi.org/10.1371/journal.pgen.0030106CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Golubovskaya I, Nadezhda AA, Sheridan WF (1992) Effects of several meiotic mutations on female meiosis in maize. Dev Genet 13:411–424CrossRefGoogle Scholar
  8. 8.
    Armstrong SJ, Jones GH (2001) Female meiosis in wild-type Arabidopsis thaliana and in two meiotic mutants. Sex Plant Reprod 13:177–183CrossRefGoogle Scholar
  9. 9.
    Barrel P, Grossniklaus U (eds) (2013) Examining female Meiocytes of maize by confocal microscopy. Plant meiosis: methods and protocols. Humana Press, New York, p 45Google Scholar
  10. 10.
    She W, Grimanelli D, Baroux C (2014) An efficient method for quantitative, single-cell analysis of chromatin modification and nuclear architecture in whole-mount ovules in Arabidopsis. J Vis Exp 88:e51530.  https://doi.org/10.3791/51530CrossRefGoogle Scholar
  11. 11.
    She W, Baroux C, Grossniklaus U (eds) (2017) Cell-Type specific chromatin analysis in whole-mount plant tissues by Immunostaining. Plant chromatin dynamics: methods and protocols. Humana Press, New York, p 651Google Scholar
  12. 12.
    Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster De novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137(1):5–18.  https://doi.org/10.1083/jcb.137.1.5CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Urata Y (1995) A three-dimensional structural dissection of Drosophila polytene chromosomes. J Cell Biol 131(2):279–295.  https://doi.org/10.1083/jcb.131.2.279CrossRefPubMedGoogle Scholar
  14. 14.
    Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464(7288):628–632.  https://doi.org/10.1038/nature08828CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rodriguez-Leal D, Leon-Martinez G, Abad-Vivero U, Vielle-Calzada JP (2015) Natural variation in epigenetic pathways affects the specification of female gamete precursors in Arabidopsis. Plant Cell 27(4):1034–1045.  https://doi.org/10.1105/tpc.114.133009CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hernández-Lagana E, Rodríguez-Leal D, Lúa J, Vielle-Calzada JP (2016) A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis. Genetics 204(3):1045–1056.  https://doi.org/10.1534/genetics.116.188151CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Su Z, Zhao L, Zhao Y, Li S, Won S, Cai H, Wang L, Li Z, Chen P, Qin Y, Chen X (2017) The THO complex non-cell-autonomously represses female Germline specification through the TAS3-ARF3 module. Curr Biol 27(11):1597–1609. e1592.  https://doi.org/10.1016/j.cub.2017.05.021CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhao L, Cai H, Su Z, Wang L, Huang X, Zhang M, Chen P, Dai X, Zhao H, Palanivelu R, Chen X, Qin Y (2017) KLU suppresses megasporocyte cell fate through SWR1-mediated activation of WRKY28 expression in Arabidopsis. Proc Natl Acad Sci U S A 115(3):526–535.  https://doi.org/10.1073/pnas.1716054115CrossRefGoogle Scholar
  19. 19.
    Pelé A, Falque M, Trotoux G, Eber F, Negre S, Gilet M, Huteau V, Lodé M, Jousseaume T, Dechaumet S, Morice J, Poncet C, Coriton O, Martin OC, Rousseau-Gueutin M, Chevre AM (2017) Amplifying recombination genome-wide and reshaping crossover landscapes in brassicas. PLoS Genet 13(5):e1006794.  https://doi.org/10.1371/journal.pgen.1006794CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Salinas-Gamboa R, Johnson SD, Sánchez-León N, Koltunow AMG, Vielle-Calzada JP (2016) New observations on gametogenic development and reproductive experimental tools to support seed yield improvement in cowpea (Vigna unguiculata L. Walp.). Plant Reprod 29:165–177.  https://doi.org/10.1007/s00497-015-0273-3CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Santiago Valentín Galvan Gordillo
    • 1
  • Rocio Escobar-Guzman
    • 2
  • Daniel Rodriguez-Leal
    • 2
    • 3
  • Jean-Philippe Vielle-Calzada
    • 2
  • Arnaud Ronceret
    • 1
    Email author
  1. 1.Instituto de Biotecnología/UNAMCuernavacaMexico
  2. 2.Grupo de Desarrollo Reproductivo y ApomixisUGA LangebioCinvestav IrapuatoMexico
  3. 3.Inari AgricultureCambridgeUSA

Personalised recommendations