Advertisement

Plant Meiosis pp 131-139 | Cite as

Analysis of Meiosis in Nonmodel Tropical Plants: The Case of Carica papaya Linn

  • José Mora-Calderón
  • Kalani Scott-Moraga
  • Pablo Bolaños-VillegasEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2061)

Abstract

To develop plants that are more tolerant to drought, marginal soil fertility, and diseases and that satisfy demands for high yield, new cultivars of the tropical fruit papaya (Carica papaya L.) are needed. Nonetheless, in many cases, these traits are available in only wild relatives found throughout Latin America. Understanding meiotic progression may facilitate the introgression of desirable traits into commercial cultivars that maintain high fertility. In this protocol, we describe a practical and simple method to effectively isolate male meiocytes in order to document the behavior of papaya meiotic chromosomes.

Key words

Meiosis Nonmodel organism Papaya Plant chromosomes Tropical agriculture 

Notes

Acknowledgments

Our work was supported by the Vicerrectoría de Investigación intramural grants # B5A13 and B0185, and we particularly wish to thank Vicechancellor Fernando García-Santamaría. Our Dell Precision Tower 7820 computer system was kindly donated by the Spanish Agency for International Development Cooperation (Agencia Española de Cooperación Internacional para el Desarrollo). We thank previous students Stefano Albertazzi, Sergio Castro-Pacheco (now a student at the Erasmus Mundus Master in Plant Breeding program), and Romano Porras (now at Universität Hohenheim, Stuttgart, Germany) for their valuable work. We also thank Eric Mora-Newcomer and Walter Barrantes-Santamaría for providing flower samples from their papaya breeding program. Pablo is a young member affiliate of the World Academy of Sciences (TWAS/UNESCO) and a member of the American Society of Plant Biologists.

References

  1. 1.
    Yu Q, Tong E, Skelton RL et al (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371CrossRefGoogle Scholar
  2. 2.
    Chen C, Yu Q, Hou S et al (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177:2481–2491CrossRefGoogle Scholar
  3. 3.
    VanBuren R, Ming R (2013) Dynamic transposable element accumulation in the nascent sex chromosomes of papaya. Mob Genet Elem 3:e23462CrossRefGoogle Scholar
  4. 4.
    Zhang W, Jiang J (2014) Molecular cytogenetics of papaya. In: Ming R, Moore PH (eds) Genetics and genomics of papaya, plant genetics and genomics: crops and models 10. Springer Science+Business Media, New York, pp 157–168CrossRefGoogle Scholar
  5. 5.
    Zhang W, Wai CM, Ming R et al (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3:166–170CrossRefGoogle Scholar
  6. 6.
    Wai CM, Moore PH, Paull RE et al (2012) An integrated cytogenetic and physical map reveals unevenly distributed recombination spots along the papaya sex chromosomes. Chromosome Res 20:753–767CrossRefGoogle Scholar
  7. 7.
    VanBuren R, Zeng F, Chen C et al (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533CrossRefGoogle Scholar
  8. 8.
    Zhang W, Wang X, Yu Q et al (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943CrossRefGoogle Scholar
  9. 9.
    Abreu IS, Carvalho CR, Soares FAF (2015) Early sex discrimination in Carica papaya by nuclei FISH. Euphytica 206:667–676CrossRefGoogle Scholar
  10. 10.
    Liao Z, Yu Q, Ming R (2017) Development of male-specific markers and identification of sex reversal mutants in papaya. Euphytica 213:53CrossRefGoogle Scholar
  11. 11.
    Narducci Da Silva E, Neto MF, Pereira TNS et al (2012) Meiotic behavior of wild Caricaceae species potentially suitable for papaya improvement. Crop Breed Appl Biotechnol 12:52–59CrossRefGoogle Scholar
  12. 12.
    Jiménez VM, Mora-Newcomer E, Gutiérrez-Soto MV (2014) Biology of the papaya plant. In: Ming R, Moore PH (eds) Genetics and genomics of papaya, plant genetics and genomics: crops and models 10. Springer Science+Business Media, New York, pp 17–33CrossRefGoogle Scholar
  13. 13.
    Corrêa DJP, Pereira TNS, Neto MF et al (2010) Meiotic behavior of Carica papaya and Vasconcellea monoica. Caryologia 63:229–236CrossRefGoogle Scholar
  14. 14.
    Caetano C, Lagos T, Sandoval C et al (2008) Citogenética de especies de Vasconcellea (Caricaceae). Acta Agronómica 57:241–245Google Scholar
  15. 15.
    Kurzbauer M-T, Pradillo M, Kerzendorfer C et al (2018) Arabidopsis thaliana FANCD2 promotes meiotic crossover formation. Plant Cell 30:415–428CrossRefGoogle Scholar
  16. 16.
    Bolaños-Villegas P, Yang X, Makaroff CA et al (2014) Protocol for the preparation of Arabidopsis meiotic chromosome spreads and fluorescent in situ hybridization. The Plant Journal 4:e1102Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • José Mora-Calderón
    • 1
  • Kalani Scott-Moraga
    • 1
  • Pablo Bolaños-Villegas
    • 1
    Email author
  1. 1.Laboratory of Cell and Molecular Biology, Fabio Baudrit Agricultural Research StationUniversity of Costa RicaAlajuelaCosta Rica

Personalised recommendations