Sonoporation for Augmenting Chemotherapy of Pancreatic Ductal Adenocarcinoma

  • Jason CastleEmail author
  • Spiros Kotopoulis
  • Flemming Forsberg
Part of the Methods in Molecular Biology book series (MIMB, volume 2059)


Pancreatic cancer is the third most common cancer diagnosed in the United States, with more than 53,000 new cases in 2017. It is the fourth leading cause of cancer-related death in both men and women. Nonetheless, there has been no significant improvement in survival for pancreatic ductal adenocarcinoma (PDAC) patients over the past 30+ years. For this reason, there is a considerable and urgent clinical need to develop innovative strategies for effective drug delivery and treatment monitoring, resulting in improved outcomes for patients with PDAC.

This chapter describes the development of contrast-enhanced ultrasound image-guided drug delivery (CEUS-IGDD or sonoporation) to be that method and to translate it from the lab to the clinic. The initial clinical focus has been on a Phase I clinical trial for enhancing the effectiveness of standard chemotherapeutics for treatment of inoperable PDAC, which demonstrated a median survival increase from 8.9 months to 17.6 months in ten subjects augmented with sonoporation compared to 63 historical controls (p = 0.011). Recent efforts to optimize this platform and move forward to a larger Phase II clinical trial will be described.

Key words

Pancreatic ductal adenocarcinoma Contrast-enhanced ultrasound imaging Sonoporation Augmented chemotherapy delivery Human clinical trial 


  1. 1.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1):7–30PubMedCrossRefGoogle Scholar
  2. 2.
    Cleary SP, Gryfe R, Guindi M et al (2004) Prognostic factors in resected pancreatic adenocarcinoma: analysis of actual 5-year survivors. J Am Coll Surg 198(5):722–731PubMedCrossRefGoogle Scholar
  3. 3.
    Klein AP (2013) Identifying people at a high risk of developing pancreatic cancer. Nat Rev Cancer 13(1):66–74PubMedCrossRefGoogle Scholar
  4. 4.
    Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Whatcott C, Han H, Posner RG, Von Hoff DD (2013) Tumor-stromal interactions in pancreatic cancer. Crit Rev Oncog 18(1–2):135–151PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kotopoulis S, Dimcevski G, Gilja OH, Hoem D, Postema M (2013) Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med Phys 40(7):072902PubMedCrossRefGoogle Scholar
  7. 7.
    Dimcevski G, Kotopoulis S, Bjånes T et al (2016) A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 243:172–181PubMedCrossRefGoogle Scholar
  8. 8.
    Forsberg F, Stanczak M, Lyshchik A et al (2018) Subharmonic and endoscopic contrast imaging of pancreatic masses – a pilot study. J Ultrasound Med 37(1):123–129PubMedCrossRefGoogle Scholar
  9. 9.
    Riall T, Cameron J, Lillemoe K et al (2005) Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma—part 3: update on 5-year survival. J Gastrointest Surg 9(9):1191–1204PubMedCrossRefGoogle Scholar
  10. 10.
    Weir HK, Thun MJ, Hankey BF et al (2003) Annual report to the nation on the status of cancer, 1975–2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst 95(17):1276–1299PubMedCrossRefGoogle Scholar
  11. 11.
    Kooiman K, Vos HJ, Versluis M, de Jong N (2014) Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 72:28–48PubMedCrossRefGoogle Scholar
  12. 12.
    Lanza GM, Moonen C, Baker JR Jr et al (2014) Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(1):1–14PubMedCrossRefGoogle Scholar
  13. 13.
    Lum AFH, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111(1–2):128–134PubMedCrossRefGoogle Scholar
  14. 14.
    Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB (2013) Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 304(3):H350–H357PubMedCrossRefGoogle Scholar
  15. 15.
    Delalande A, Bouakaz A, Renault G et al (2011) Ultrasound and microbubble-assisted gene delivery in Achilles tendons: long lasting gene expression and restoration of fibromodulin KO phenotype. J Control Release 156(2):223–230PubMedCrossRefGoogle Scholar
  16. 16.
    Chen Z-Y, Liang K, Qiu R-X (2010) Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethyleneimine to inhibit surviving gene expression and induce apoptosis. J Exp Clin Cancer Res 29:152PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chen S, Ding J-H, Bekeredjian R et al (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 103(22):8469–8474PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Carson AR, McTiernan CF, Lavery L et al (2011) Gene therapy of carcinoma using ultrasound-targeted microbubble destruction. Ultrasound Med Biol 37(3):393–402PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Carson AR, McTiernan CF, Lavery L (2012) Ultra-sound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res 72(23):6191–6199PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Castle J, Kent K, Fan Y et al (2015) Therapeutic ultrasound: increased HDL-cholesterol following infusions of acoustic microspheres and apolipoprotein A-I plasmids. Atherosclerosis 241(1):92–99PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Castle J, Feinstein SB (2014) Ultrasound-directed, site specific gene delivery. In: Jain KK (ed) Drug delivery system, 2nd edn. Springer, New York, NYGoogle Scholar
  22. 22.
    Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C (2013) Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 525(2):191–199PubMedCrossRefGoogle Scholar
  23. 23.
    Escoffre J-M, Zeghimi A, Novell A, Bouakaz A (2013) In-vivo gene delivery by sonoporation: recent progress and prospects. Curr Gene Ther 13(1):2–14PubMedCrossRefGoogle Scholar
  24. 24.
    Slikkerveer J, Kleijn SA, Appelman Y et al (2012) Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the sonolysis study. Ultrasound Med Biol 38(2):247–252PubMedCrossRefGoogle Scholar
  25. 25.
    Bekeredjian R, Chen S, Pan W, Grayburn PA, Shohet RV (2004) Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med Biol 30(4):539–543PubMedCrossRefGoogle Scholar
  26. 26.
    Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA (2003) Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 42(2):301–308PubMedCrossRefGoogle Scholar
  27. 27.
    Jarzabek MA, Huszthy PC, Skaftnesmo KO et al (2013) In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme. Mol Imaging 12(3):161–172PubMedCrossRefGoogle Scholar
  28. 28.
    Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L (2014) High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Sci 17(1):136–153Google Scholar
  29. 29.
    Goldberg B, Raichlen J, Forsberg F (2001) Ultrasound contrast agents: basic principles and clinical applications. Taylor & Francis, AbingdonGoogle Scholar
  30. 30.
    Postema M, Kotopoulis S, Delalande A, Gilja O (2012) Sonoporation: why microbubbles create pores. Ultraschall Med 33:97–98CrossRefGoogle Scholar
  31. 31.
    van Wamel A, Kooiman K, Harteveld M et al (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112(2):149–155PubMedCrossRefGoogle Scholar
  32. 32.
    Kotopoulis S, Delalande A, Popa M et al (2014) Sonoporation-enhanced chemotherapy significantly reduces primary tumor burden in an orthotopic pancreatic cancer xenograft. Mol Imaging Biol 16(1):53–62PubMedCrossRefGoogle Scholar
  33. 33.
    Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern-Cooperative-Oncology-Group. Am J Clin Oncol 5:649–655PubMedCrossRefGoogle Scholar
  34. 34.
    Eisenbrey JR, Dave JK, Halldorsdottir VG et al (2011) Simultaneous grayscale and subharmonic ultrasound imaging on a modified commercial scanner. Ultrasonics 51(8):890–897PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Eisenbrey JR, Sridharan A, Machado P et al (2012) Three-dimensional subharmonic ultrasound imaging in vitro and in vivo. Acad Radiol 19(6):732–739PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Eisenbrey JR, Dave JK, Halldorsdottir VG et al (2013) Chronic liver disease: noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient. Radiology 268(2):581–588PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Eisenbrey JR, Shaw CM, Lyshchik A et al (2015) Contrast-enhanced subharmonic and harmonic ultrasound of renal masses undergoing percutaneous cryoablation. Acad Radiol 22(7):820–826PubMedCrossRefGoogle Scholar
  38. 38.
    Eisenbrey JR, Wilson CC, Ro RJ et al (2013) Correlation of ultra-sound contrast agent derived blood flow parameters with immunohistochemical angiogenesis markers in murine xenograft tumor models. Ultrasonics 53(7):1384–1391PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Nam K, Eisenbrey JR, Stanczak M et al (2017) Monitoring neoadjuvant chemotherapy for breast cancer by using three-dimensional subharmonic aided pressure estimation and imaging with US contrast agents: preliminary experience. Radiology 285(1):53–62PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sridharan A, Eisenbrey JR, Liu J-B et al (2013) Perfusion estimation using contrast-enhanced 3-dimensional subharmonic ultrasound imaging: an in vivo study. Investig Radiol 48(9):654–660CrossRefGoogle Scholar
  41. 41.
    Dave JK, Forsberg F (2009) Novel automated motion compensation technique for producing cumulative maximum intensity subharmonic images. Ultrasound Med Biol 35(9):1555–1563PubMedCrossRefGoogle Scholar
  42. 42.
    Dave JK, Forsberg F, Fernandes S et al (2010) Static and dynamic cumulative maximum intensity display mode for subharmonic breast imaging: a comparative study with mammographic and conventional ultrasound techniques. J Ultrasound Med 29(8):1177–1185PubMedCrossRefGoogle Scholar
  43. 43.
    Forsberg F, Piccoli CW, Merton DA, Palazzo JJ, Hall AL (2007) Breast lesions: imaging with contrast-enhanced subharmonic US--initial experience. Radiology 244(3):718–726PubMedCrossRefGoogle Scholar
  44. 44.
    Czarnota GJ, Karshafian R, Burns PN et al (2012) Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci U S A 109(30):E2033–E2041PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gao Y, Gao S, Zhao B, Zhao Y, Hua X, Tan K, Liu Z (2012) Vascular effects of microbubble-enhanced, pulsed, focused ultrasound on liver blood perfusion. Ultrasound Med Biol 38(1):91–98PubMedCrossRefGoogle Scholar
  46. 46.
    Goertz DE, Todorova M, Mortazavi O et al (2012) Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One 7(12):e52307PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Eisenbrey J, Merton D, Liu J, Fox T, Sridharan A, Forsberg F (2013) Ultrasound contrast agent-based vascularity measurements versus photoacoustic derived hemoglobin and oxygenation measurements in a breast cancer model (abstract). World Mol Imaging Congr 2013:P563Google Scholar
  48. 48.
    Eisenbrey J, Marshall A, Liu J, Sridharan A, Forsberg F (2013) Comparing photoacoustically derived hemoglobin and oxygenation measurements and ultrasound contrast agent derived vascularity measurements to immunohistochemical staining in a breast cancer xenograft model (abstract). Prog RSNA 2013:CL-MIS-MO1BGoogle Scholar
  49. 49.
    Eisenbrey JR, Merton DA, Marshall A et al (2015) Comparison of photoacoustically derived hemoglobin and oxygenation measurements with contrast-enhanced ultrasound estimated vascularity and immunohistochemical staining in a breast cancer model. Ultrason Imaging 37(1):42–52PubMedCrossRefGoogle Scholar
  50. 50.
    Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703CrossRefGoogle Scholar
  51. 51.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Jason Castle
    • 1
    Email author
  • Spiros Kotopoulis
    • 2
  • Flemming Forsberg
    • 3
  1. 1.General Electric ResearchNiskayunaUSA
  2. 2.National Centre for Ultrasound in GastroenterologyHaukeland University HospitalBergenNorway
  3. 3.Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations