Advertisement

Measurement of S-Nitrosoglutathione Reductase Activity in Plants

  • Martina Janků
  • Tereza Tichá
  • Lenka Luhová
  • Marek PetřivalskýEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2057)

Abstract

S-nitrosation as a redox-based posttranslational modification of protein cysteine has emerged as an integral part of signaling pathways of nitric oxide across all types of organisms. Protein S-nitrosation status is controlled by two key mechanisms: by direct denitrosation performed by the thioredoxin/thioredoxin reductase system, and in an indirect way mediated by S-nitrosoglutathione reductase (GSNOR). GSNOR, which has been identified as a key component of S-nitrosothiols catabolism, catalyzes an irreversible decomposition of abundant intracellular S-nitrosothiol, S-nitrosoglutathione (GSNO) to oxidized glutathione using reduced NADH cofactor. In plants, GSNOR has been shown to play important roles in plant growth and development and plant responses to abiotic and biotic stress stimuli. In this chapter, optimized protocols of spectrophotometric measurement of GSNOR enzymatic activity and activity staining in native polyacrylamide gels in plant GSNOR are presented.

Key words

S-nitrosation S-nitrosothiols Nitric oxide S-nitrosoglutathione reductase Plant stress 

Notes

Acknowledgments

This project was supported by an internal Grant from Palacky University in Olomouc (IGA_PrF_2019_022).

References

  1. 1.
    Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156CrossRefGoogle Scholar
  2. 2.
    Seth D, Stamler JS (2011) The SNO-proteome: causation and classifications. Curr Opin Chem Biol 15:129–136CrossRefGoogle Scholar
  3. 3.
    Martínez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52CrossRefGoogle Scholar
  4. 4.
    Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Frontiers Plant Sci 4:126Google Scholar
  5. 5.
    Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732CrossRefGoogle Scholar
  6. 6.
    Koivusalo M, Baumann M, Uotila L (1989) Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett 257:105–109CrossRefGoogle Scholar
  7. 7.
    Jensen D, Belka G, Du Bois G (1998) S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem J 331:659–668CrossRefGoogle Scholar
  8. 8.
    Liu L, Hausladen A, Zeng M et al (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494CrossRefGoogle Scholar
  9. 9.
    Staab CA, Hellgren M, Höög JO (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: dual functions of alcohol dehydrogenase 3: implications with focus on formaldehyde dehydrogenase and S-nitrosoglutathione reductase activities. Cell Mol Life Sci 65:3950–3960CrossRefGoogle Scholar
  10. 10.
    Kubienová L, Kopečný D, Tylichová M et al (2013) Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie 95:889–902CrossRefGoogle Scholar
  11. 11.
    Leterrier M, Chaki M, Airaki M et al (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 6:789–793CrossRefGoogle Scholar
  12. 12.
    Xu S, Guerra D, Lee U, Vierling E (2013) S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Frontiers Plant Sci 4:430CrossRefGoogle Scholar
  13. 13.
    Corpas FJ, Carreras A, Esteban FJ et al (2008) Localization of S-nitrosothiols and assay of nitric oxide synthase and S-nitrosoglutathione reductase activity in plants. Methods Enzymol 437:561–574CrossRefGoogle Scholar
  14. 14.
    Chaki M, Valderrama R, Fernández-Ocaňa AM et al (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813CrossRefGoogle Scholar
  15. 15.
    Barnett SD, Buxton LO (2017) The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit Rev Biochem Mol Biol 52:340–354CrossRefGoogle Scholar
  16. 16.
    Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236:302–308CrossRefGoogle Scholar
  17. 17.
    Moore KP, Mani AR (2002) Measurement of protein nitration and S-nitrosothiol formation in biology and medicine. In: Cadenas E, Lester P (eds) Methods in enzymology. Academic Press, Cambridge, MA, pp 256–268Google Scholar
  18. 18.
    Uotila L, Koivusalo M (1974) Purification and properties of S-formylglutathione hydrolase from human liver. J Biol Chem 249:7664–7672PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Martina Janků
    • 1
  • Tereza Tichá
    • 1
  • Lenka Luhová
    • 1
  • Marek Petřivalský
    • 1
    Email author
  1. 1.Department of Biochemistry, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations