Advertisement

FISH Protocol for Myotonic Dystrophy Type 1 Cells

  • Arnaud F. Klein
  • Ludovic Arandel
  • Joelle Marie
  • Denis FurlingEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2056)

Abstract

Mutant DMPK transcripts containing expanded CUG repeats (CUGexp) are retained within the nucleus of myotonic dystrophy type 1 (DM1) cells as discrete foci. Nuclear CUGexp-RNA foci that sequester MBNL1 splicing factor represent a hallmark of this RNA dominant disease caused by the expression of expanded microsatellite repeats. Here we described fluorescent in situ hybridization (FISH) techniques to detect either RNA containing CUG expansion or DMPK transcripts in human DM1 or WT cells. In addition, we propose a combined FISH/immunofluorescence protocol to visualize the colocalization of MBNL1 with CUGexp-RNA foci in DM1 cells.

Keywords

Myotonic dystrophy Nuclear RNA foci CUG expansion DMPK transcripts MBNL1 Fluorescent in situ hybridization Immunofluorescence 

Notes

Acknowledgments

This research was supported by Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), and the Association Institut de Myologie (AIM).

References

  1. 1.
    Harper PS (2001) Myotonic dystrophy. W.B. Saunders—Harcourt Publishers, LondonGoogle Scholar
  2. 2.
    Wenninger S, Montagnese F, Schoser B (2018) Core clinical phenotypes in Myotonic dystrophies. Front Neurol 9:776–779CrossRefGoogle Scholar
  3. 3.
    Brook JD, McCurrach ME, Harley HG et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808CrossRefGoogle Scholar
  4. 4.
    Mahadevan M, Tsilfidis C, Sabourin L et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255CrossRefGoogle Scholar
  5. 5.
    Fu YH, Pizzuti A, Fenwick RG et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258CrossRefGoogle Scholar
  6. 6.
    Ashizawa T, Harper PS (2006) Myotonic dystrophies: an overview. In: Genetic instabilities and neurological diseases. Elsevier, Amsterdam, pp 21–36CrossRefGoogle Scholar
  7. 7.
    Taneja KL, McCurrach M, Schalling M et al (1995) Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 128:995–1002CrossRefGoogle Scholar
  8. 8.
    Davis BM, McCurrach ME, Taneja KL et al (1997) Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci 94:7388–7393CrossRefGoogle Scholar
  9. 9.
    Miller JW, Urbinati CR, Teng-Umnuay P et al (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19:4439–4448CrossRefGoogle Scholar
  10. 10.
    Fardaei M, Larkin K, Brook JD et al (2001) In vivo co-localisation of MBNL protein with DMPK expanded-repeat transcripts. Nucleic Acids Res 29:2766–2771CrossRefGoogle Scholar
  11. 11.
    Mankodi A, Urbinati CR, Yuan QP et al (2001) Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 10:2165–2170CrossRefGoogle Scholar
  12. 12.
    Charlet BN, Savkur RS, Singh G et al (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53CrossRefGoogle Scholar
  13. 13.
    Lin X, Miller JW, Mankodi A et al (2006) Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 15:2087–2097CrossRefGoogle Scholar
  14. 14.
    Ho TH, Charlet BN, Poulos MG et al (2004) Muscleblind proteins regulate alternative splicing. EMBO J 23:3103–3112CrossRefGoogle Scholar
  15. 15.
    Konieczny P, Stepniak-Konieczna E, Sobczak K (2014) MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res 42:10873–10887CrossRefGoogle Scholar
  16. 16.
    Nakamori M, Sobczak K, Puwanant A et al (2013) Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol 74:862–872CrossRefGoogle Scholar
  17. 17.
    Fugier C, Klein AF, Hammer C et al (2011) Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 17:720–725CrossRefGoogle Scholar
  18. 18.
    Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47CrossRefGoogle Scholar
  19. 19.
    Rau F, Lainé J, Ramanoudjame L et al (2015) Abnormal splicing switch of DMD’s penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nat Commun 6:385–310CrossRefGoogle Scholar
  20. 20.
    Freyermuth F, Rau F, Kokunai Y et al (2016) Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun 7:11067CrossRefGoogle Scholar
  21. 21.
    Jiang H, Mankodi A, Swanson MS et al (2004) Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 13:3079–3088CrossRefGoogle Scholar
  22. 22.
    Michel L, Huguet-Lachon A, Gourdon G (2015) Sense and antisense DMPK RNA foci accumulate in DM1 tissues during development. PLoS One 10:e0137620CrossRefGoogle Scholar
  23. 23.
    Francois V, Klein AF, Beley C et al (2011) Selective silencing of mutated mRNAs in DM1 by using modified hU7-snRNAs. Nat Struct Mol Biol 18:85–87CrossRefGoogle Scholar
  24. 24.
    Smith KP, Byron M, Johnson C et al (2007) Defining early steps in mRNA transport: mutant mRNA in myotonic dystrophy type I is blocked at entry into SC-35 domains. J Cell Biol 178:951–964CrossRefGoogle Scholar
  25. 25.
    Querido E, Gallardo F, Beaudoin M et al (2011) Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J Cell Sci 124:1703–1714CrossRefGoogle Scholar
  26. 26.
    Dansithong W, Paul S, Comai L et al (2005) MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1. J Biol Chem 280:5773–5780CrossRefGoogle Scholar
  27. 27.
    Arandel L, Polay Espinoza M, Matloka M et al (2017) Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech 10:487–497CrossRefGoogle Scholar
  28. 28.
    Taneja KL (1998) Localization of trinucleotide repeat sequences in myotonic dystrophy cells using a single fluorochrome-labeled PNA probe. BioTechniques 24:472–476CrossRefGoogle Scholar
  29. 29.
    Tsanov N, Samacoits A, Chouaib R et al (2016) smiFISH and FISH-quant—a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res 44:e165–e165CrossRefGoogle Scholar
  30. 30.
    Byron M, Hall LL, Lawrence JB (2013) A multifaceted FISH approach to study endogenous RNAs and DNAs in native nuclear and cell structures, current protocols in human genetics. Chapter 4. Unitas 4:15–4.15.21Google Scholar
  31. 31.
    Holt I, Jacquemin V, Fardaei M et al (2009) Muscleblind-like proteins. Am J Pathol 174:216–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Arnaud F. Klein
    • 1
    • 2
    • 3
  • Ludovic Arandel
    • 1
    • 2
    • 3
  • Joelle Marie
    • 1
    • 2
    • 3
  • Denis Furling
    • 1
    • 2
    • 3
    Email author
  1. 1.Centre de Recherche en Myologie, Sorbonne UniveristéParisFrance
  2. 2.Centre de Recherche en Myologie, InsermParisFrance
  3. 3.Association Institut de MyologieParisFrance

Personalised recommendations