Identifying MicroRNA Pathway Variants as Biomarkers of Patient Selection for Immune Therapy

  • Joanne B. WeidhaasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)


In this chapter we discuss the discovery and validation of microRNA (miRNA) associated germline biomarkers, as well as their application on a cohort of patients treated with immune therapy to predict response and toxicity. MiRNAs are the first class of noncoding RNAs discovered, and these pathways have been shown to be important regulators of the systemic stress response, including that to cancer therapy. We detail the original discovery efforts identifying germline biomarkers that disrupt miRNA circuitry, and then the selection, application, and validation of these biomarkers and their potential to predict important outcomes to checkpoint therapy.

Key words

MicroRNAs Germline Biomarkers iRAEs SNPs 


  1. 1.
    Flynt A, Lai E (2008) Biological principles of MicroRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842PubMedPubMedCentralGoogle Scholar
  2. 2.
    Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A et al (2000) The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403:901–906Google Scholar
  3. 3.
    Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707PubMedGoogle Scholar
  4. 4.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261PubMedPubMedCentralGoogle Scholar
  5. 5.
    Saunders MA, Liang H, Wen-Hsiung L (2007) Human polymorphism at microRNAs and microRNA target sites. PNAS 104:3300–3305PubMedGoogle Scholar
  6. 6.
    Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801PubMedGoogle Scholar
  7. 7.
    Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68(20):8535–8540PubMedPubMedCentralGoogle Scholar
  8. 8.
    Shen J, DiCioccio R, Odunsi K, Lele SB, Zhao H (2010) Novel genetic variants in miR-191 gene and familial ovarian cancer. BMC Cancer 10:47PubMedPubMedCentralGoogle Scholar
  9. 9.
    Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29(10):1963–1966PubMedGoogle Scholar
  10. 10.
    Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67(23):11111–11116PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kato M, Paranjape T, Muller RU, Nallur S, Gillespie E, Keane K et al (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28(25):2419–2424PubMedPubMedCentralGoogle Scholar
  12. 12.
    Balca- Silva J, Sousa NS, Goncalves A, Abrantes A, Casalta-Lopes J, Beotelho M et al (2012) Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines. Anticancer Res 32:1603–1609PubMedGoogle Scholar
  13. 13.
    Sathe A, Ayyar K, Reddy K (2014) MicroRNA let-7 in the spotlight: Role in innate immunity. Inflam Cell Signal e109:1–8Google Scholar
  14. 14.
    Cortez M, Ivan C, Valdecanas D, Wang X, Peltier H, Ye Y et al (2015) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 108:djv303PubMedPubMedCentralGoogle Scholar
  15. 15.
    Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ et al (2016) miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nat Commun 7:10954PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ratner E, Keane F, Lindner R, Tassi R, Paranjape T, Glasgow M et al (2012) A KRAS-variant is a Biomarker of Poor Outcome, Platinum Chemotherapy Resistance and a Potential Target for Therapy in Ovarian Cancer. Oncogene 31(42):4559–4566PubMedGoogle Scholar
  17. 17.
    Weidhaas J, Kim E, Herbst R, Yu J, Slack F, Blumenschein G et al (2014) The KRAS-variant and treatment response in BATTLE-1. J Clin Oncol 32(52):8135Google Scholar
  18. 18.
    Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D et al (2010) Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J 10(5):458–464PubMedGoogle Scholar
  19. 19.
    Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M et al (2011) A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol 22(1):104–109PubMedGoogle Scholar
  20. 20.
    Ganzinelli M, Rulli E, Caiola E, Chiara Garassino M, Broggini M, Copreni E et al (2015) Role of KRAS-LCS6 polymorphism in advanced NSCLC patients treated with erlotinib or docetaxel in second line treatment (TAILOR). Sci Rep 5:16331PubMedPubMedCentralGoogle Scholar
  21. 21.
    Chung C, Lee J, Slebos R, Howard J, Perez JM, Kang H et al (2014) A 3'UTR KRAS variant is associated with cisplatin resistance in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 25(11):2230–2236PubMedPubMedCentralGoogle Scholar
  22. 22.
    Saridaki Z, Weidhaas J, Lenz H-J, Laurent-Puig P, Jacobs B, De Schutter J et al (2014) A let-7 microRNA-binding site polymorphism is KRAS predicts improved outcome in metastatic colorectal cancer (mCRC) patients treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res 20(17):4499–4510PubMedPubMedCentralGoogle Scholar
  23. 23.
    Weidhaas JB, Harris J, Schaue D, Chen A, Chin R, Axelrod R et al (2017) The KRAS-variant and Cetuximab Response in Head and Neck Squamous Cell Cancer, A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol 3(4):483–491PubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen X, Paranjape T, Stahlhut C, McVeigh T, Keane F, Nallur S et al (2015) Targeted resequencing of the microRNAome and 3'UTRome reveals functional germline DNA variants with altered prevalence in epithelial ovarian cancer. Oncogene 34(16):2125–2137PubMedGoogle Scholar
  25. 25.
    Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527PubMedGoogle Scholar
  26. 26.
    Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4(11):907–909PubMedGoogle Scholar
  27. 27.
    Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4(11):903–905PubMedGoogle Scholar
  28. 28.
    Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10(5):R54PubMedPubMedCentralGoogle Scholar
  29. 29.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760PubMedPubMedCentralGoogle Scholar
  30. 30.
    Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858PubMedPubMedCentralGoogle Scholar
  31. 31.
    Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28(1):352–355PubMedPubMedCentralGoogle Scholar
  32. 32.
    Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073PubMedGoogle Scholar
  33. 33.
    Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(45):19096–19101PubMedPubMedCentralGoogle Scholar
  34. 34.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363PubMedPubMedCentralGoogle Scholar
  35. 35.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798PubMedGoogle Scholar
  36. 36.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server):W451–W454PubMedPubMedCentralGoogle Scholar
  37. 37.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4Google Scholar
  38. 38.
    Fang W, Bartel DP (2015) The menu of features that define primary microRNAs and enable de novo design of microRNA genes. Mol Cell 60(1):131–145PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedPubMedCentralGoogle Scholar
  40. 40.
    Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38(6):789–802PubMedPubMedCentralGoogle Scholar
  41. 41.
    Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM et al (2018) Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36(17):1714–1768PubMedPubMedCentralGoogle Scholar
  42. 42.
    Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS (2013) Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res 19(14):3936–3943PubMedPubMedCentralGoogle Scholar
  43. 43.
    Breiman L, Friedman JH, Olshen RA, Stone CJ (2017) Classification and regression trees. CRC Press, Boca Raton, FLGoogle Scholar
  44. 44.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodology 58(1):267–288Google Scholar
  45. 45.
    Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system.
  46. 46.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32Google Scholar
  47. 47.
    Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing V, Austria., editor 2018
  48. 48.
    Su Y, Gelman A, Hill J, Yajima M (2011) Multiple imputation with diagnostics (mi) in r: opening windows into the black box. j stat softw 45(2):1–31Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations