Advertisement

Translating Immuno-oncology Biomarkers to Diagnostic Tests: A Regulatory Perspective

  • You Li
  • Janaki Veeraraghavan
  • Reena PhilipEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

The rapid development of effective immunotherapy using immune-checkpoint inhibitors (ICIs) against many different cancer types opened a new front in cancer treatment. Immunotherapy is undoubtedly one of the biggest breakthroughs in cancer therapy within the past decade. The identification of predictive biomarkers to select the patients most likely to respond to ICI monotherapies or emerging combination therapies remains one of the major unmet needs for the oncology community.

This chapter provides an overview of existing and emerging biomarkers associated with ICI response. Additionally, using several case studies of FDA approved or authorized in vitro diagnostic oncology devices, this chapter also provides an overview of analytical and clinical validation considerations of diagnostic tests for immuno-oncology biomarkers.

Key words

Companion diagnostic Biomarker Immuno-oncology Cancer immunotherapy FDA Assay validation 

References

  1. 1.
    Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287CrossRefGoogle Scholar
  2. 2.
    BEST (Biomarkers, EndpointS, and other Tools) Resource (2016) Silver Spring (MD)Google Scholar
  3. 3.
    Mandrekar SJ, Sargent DJ (2010) Predictive biomarker validation in practice: lessons from real trials. Clin Trials 7:567–573CrossRefGoogle Scholar
  4. 4.
    Califf RM (2018) Biomarker definitions and their applications. Exp Biol Med (Maywood) 243:213–221CrossRefGoogle Scholar
  5. 5.
    FDA (2014) In Vitro Companion Diagnostic Devices Guidance for Industry and Food and Drug Administration StaffGoogle Scholar
  6. 6.
    Roscoe DM, Hu YF, Philip R (2015) Companion diagnostics: a regulatory perspective from the last 5 years of molecular companion diagnostic approvals. Expert Rev Mol Diagn 15:869–880CrossRefGoogle Scholar
  7. 7.
    Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17:e542–ee51CrossRefGoogle Scholar
  8. 8.
    Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16:2598–2608CrossRefGoogle Scholar
  9. 9.
    Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074CrossRefGoogle Scholar
  10. 10.
    FDA (2016) Summary of Safety and Effectiveness Data for Dako PD-L1 IHC 22C3 pharmDxGoogle Scholar
  11. 11.
    FDA (2017) Summary of Safety and Effectiveness Data for Ventana PD-L1 IHC SP263 AssayGoogle Scholar
  12. 12.
    FDA (2016) Summary of Safety and Effectiveness Data for VENTANA PD-L1 (SP142) AssayGoogle Scholar
  13. 13.
    FDA (2015) Summary of Safety and Effectiveness Data for Dako PD-L1 IHC 28-8 phramDxGoogle Scholar
  14. 14.
    FDA-AACR-ASCO Public Workshop (2015) Harmonizing companion diagnostics across a class of targeted therapiesGoogle Scholar
  15. 15.
    Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 12:208–222CrossRefGoogle Scholar
  16. 16.
    Tsao MS, Kerr KM, Kockx M, Beasley MB, Borczuk AC, Botling J et al (2018) PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol 13:1302–1311CrossRefGoogle Scholar
  17. 17.
    FDA (2017) Summary of Safety and Effectiveness Data for PD-L1 IHC 22C3 pharmDx in Gastric CancerGoogle Scholar
  18. 18.
    Lemery S, Keegan P, Pazdur R (2017) First FDA approval agnostic of cancer site - when a biomarker defines the indication. N Engl J Med 377:1409–1412CrossRefGoogle Scholar
  19. 19.
    Liu D, Keijzers G, Rasmussen LJ (2017) DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res 773:174–187CrossRefGoogle Scholar
  20. 20.
    Cicek MS, Lindor NM, Gallinger S, Bapat B, Hopper JL, Jenkins MA et al (2011) Quality assessment and correlation of microsatellite instability and immunohistochemical markers among population- and clinic-based colorectal tumors results from the colon cancer family registry. J Mol Diagn 13:271–281CrossRefGoogle Scholar
  21. 21.
    Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087.e3CrossRefGoogle Scholar
  22. 22.
    Murphy KM, Zhang S, Geiger T, Hafez MJ, Bacher J, Berg KD et al (2006) Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn 8:305–311CrossRefGoogle Scholar
  23. 23.
    FDA (2017) DEN170030 Decision summary for VENTANA MMR IHC panel de novo authorizationGoogle Scholar
  24. 24.
    Hempelmann JA, Scroggins SM, Pritchard CC, Salipante SJ (2015) MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J Mol Diagn 17:705–714CrossRefGoogle Scholar
  25. 25.
    Kautto EA, Bonneville R, Miya J, Yu L, Krook MA, Reeser JW et al (2017) Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 8:7452–7463CrossRefGoogle Scholar
  26. 26.
    Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD et al (2014) MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30:1015–1016CrossRefGoogle Scholar
  27. 27.
    Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA et al (2018) Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA OncolGoogle Scholar
  28. 28.
    Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC (2014) Microsatellite instability detection by next generation sequencing. Clin Chem 60:1192–1199CrossRefGoogle Scholar
  29. 29.
    FDA (2017) DEN170058 decision summary for MSK-IMPACTGoogle Scholar
  30. 30.
    Wong PF, Wei W, Smithy JW, Acs B, Toki MI, Blenman KRM et al (2019) Multiplex quantitative analysis of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma. Clin Cancer ResGoogle Scholar
  31. 31.
    FDA (2016) K150588 decision summary for OVA1 Next Generation TestGoogle Scholar
  32. 32.
    Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34CrossRefGoogle Scholar
  33. 33.
    Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y et al (2018) Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med 24:1441–1448CrossRefGoogle Scholar
  34. 34.
    Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C et al (2018) Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378:2093–2104CrossRefGoogle Scholar
  35. 35.
    Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36:633–641CrossRefGoogle Scholar
  36. 36.
    Baker RG, Hoos AX, Adam SJ, Wholley D, Doroshow JH, Lowy DR et al (2018) The Partnership for Accelerating Cancer Therapies. Cancer J 24:111–114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.OHT7/ Office of In Vitro Diagnostics and Radiological Health, Office of Product Evaluation and Quality, Center for Diagnostics and Radiological HealthU.S. Food and Drug AdministrationSilver SpringUSA

Personalised recommendations