Advertisement

Multiplatform Integrative Analysis of Immunogenomic Data for Biomarker Discovery

  • Vésteinn ThorssonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

Genomic platforms are increasingly used to gain an understanding of how the immune system responds to cancer. In this chapter we describe steps applied in immunogenomic processing and data processing from multiple genomics platforms to enable study of immune response and the evaluation of candidate biomarkers. We also describe how publicly available web resources can be used to discover and evaluate candidate cancer immune biomarkers.

Key words

Immuno-oncology Cancer genomics Tumor immunology Integrative biology Web portal 

References

  1. 1.
    Hutter C, Zenklusen JC (2018) The cancer genome atlas: creating lasting value beyond its data. Cell 173:283–285.  https://doi.org/10.1016/j.cell.2018.03.042CrossRefPubMedGoogle Scholar
  2. 2.
    Jennings JL, Stein LD, Calvo F (2017) Abstract 377: International Cancer Genome Consortium (ICGC). Cancer Res.  https://doi.org/10.1158/1538-7445.AM2017-377
  3. 3.
    Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pagès F, Speicher MR, Trajanoski Z, Galon J (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795.  https://doi.org/10.1016/j.immuni.2013.10.003CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, Holt RA (2014) Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24:743–750.  https://doi.org/10.1101/gr.165985.113CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer Immunogenomic analyses reveal genotype-Immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262.  https://doi.org/10.1016/j.celrep.2016.12.019CrossRefGoogle Scholar
  6. 6.
    Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945.  https://doi.org/10.1038/nm.3909CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG (2016) Genomic analysis of immune cell infiltrates across 11 tumor types. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djw144CrossRefGoogle Scholar
  8. 8.
    Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17(1):174.  https://doi.org/10.1186/s13059-016-1028-7CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61.  https://doi.org/10.1016/j.cell.2014.12.033CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CE, Cancer Genome Atlas Research Network, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich L (2018) The immune landscape of cancer. Immunity 48:812–830.e14.  https://doi.org/10.1016/j.immuni.2018.03.023CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ (2017) PanCancer insights from the cancer genome atlas: the pathologist’s perspective. J Pathol 244(5):512–524.  https://doi.org/10.1002/path.5028CrossRefGoogle Scholar
  12. 12.
    Zhao T, Hou L, Nguyen V, Gao Y, Samaras D, Kurc T, Saltz J (2014) Using machine methods to score tumor-infiltrating lymphocytes in lung cancer. In: Lab. Investig. Nature Publishing Group, p. 403AGoogle Scholar
  13. 13.
    Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, Samaras D, Shroyer KR, Zhao T, Batiste R, Van Arnam J, Cancer Genome Atlas Research Network, Shmulevich I, Rao AUK, Lazar AJ, Sharma A, Thorsson V (2018) Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep 23:181–193.e7.  https://doi.org/10.1016/j.celrep.2018.03.086CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krasnitz A (2017) Cancer Bioinformatics.  https://doi.org/10.1007/978-1-4939-8868-6Google Scholar
  15. 15.
    von Stechow L (2016) Cancer Systems Biology.  https://doi.org/10.1007/978-1-4939-7493-1Google Scholar
  16. 16.
    Torcivia-Rodriguez J, Dingerdissen H, Chang T-C, Mazumder R (2017) A primer for access to repositories of cancer-related genomic big data. Methods Mol Biol 1878:1–37.  https://doi.org/10.1007/978-1-4939-8868-6_1CrossRefGoogle Scholar
  17. 17.
    Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, Akbani R, Bowlby R, Wong CK, Wiznerowicz M, Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H, Malta TM, Cancer Genome Atlas Network, Stuart JM, Benz CC, Laird PW (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 Tumors from 33 types of. Cancer Cell 173:291–304.e6.  https://doi.org/10.1016/j.cell.2018.03.022CrossRefGoogle Scholar
  18. 18.
    Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotti KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L, MC3 Working Group, Cancer Genome Atlas Research Network (2018) Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst 6:271–281.e7.  https://doi.org/10.1016/j.cels.2018.03.002CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu J, TCGA Research Network An Integrated TCGA PanCancer Clinical Data Resource (TCGA-CDR) to drive high quality survival outcome analytics. TCGA PanCancerAtlas Manuscr. Submitt. to Cell PressGoogle Scholar
  20. 20.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and Transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35–44.  https://doi.org/10.1016/j.cell.2016.02.065CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Geukes Foppen MH, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211.  https://doi.org/10.1126/science.aad0095CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martín-Algarra S, Mandal R, Sharfman WH, Bhatia S, Hwu W-J, Gajewski TF, Slingluff CL, Chowell D, Kendall SM, Chang H, Shah R, Kuo F, Morris LGT, Sidhom J-W, Schneck JP, Horak CE, Weinhold N, Chan TA (2017) Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell 171:934–949.e16.  https://doi.org/10.1016/j.cell.2017.09.028CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, De Macedo MP, Austin-Breneman JL, Jiang H, Chang Q, Reddy SM, Chen W-S, Tetzlaff MT, Broaddus RJ, Davies MA, Gershenwald JE, Haydu L, Lazar AJ, Patel SP, Hwu P, Hwu W-J, Diab A, Glitza IC, Woodman SE, Vence LM, Wistuba II, Amaria RN, Kwong LN, Prieto V, Davis RE, Ma W, Overwijk WW, Sharpe AH, Hu J, Futreal PA, Blando J, Sharma P, Allison JP, Chin L, Wargo JA (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6:827–837.  https://doi.org/10.1158/2159-8290.CD-15-1545CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Prat A, Navarro A, Paré L, Reguart N, Galván P et al (2017) Immune-related gene expression profiling after PD-1 blockade in non–small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res 77(13):3540–3550.  https://doi.org/10.1158/0008-5472.CAN-16-3556CrossRefPubMedGoogle Scholar
  25. 25.
    Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ, Boland G, Flaherty K, Herlyn M, Ruppin E (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24:1545–1549.  https://doi.org/10.1038/s41591-018-0157-9CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, Chakravarty D, Daian F, Gao Q, Bailey MH, Liang W-W, Foltz SM, Shmulevich I, Ding L, Heins Z, Ochoa A, Gross B, Gao J, Zhang H, Kundra R, Kandoth C, Bahceci I, Dervishi L, Dogrusoz U, Zhou W, Shen H, Laird PW, Way GP, Greene CS, Liang H, Xiao Y, Wang C, Iavarone A, Berger AH, Bivona TG, Lazar AJ, Hammer GD, Giordano T, Kwong LN, McArthur G, Huang C, Tward AD, Frederick MJ, McCormick F, Meyerson M, Cancer Genome Atlas Research Network, Van Allen EM, Cherniack AD, Ciriello G, Sander C, Schultz N (2018) Oncogenic Signaling pathways in the cancer genome atlas. Cell 173:321–337.e10.  https://doi.org/10.1016/j.cell.2018.03.035CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wellenstein MD, de Visser KE (2018) Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48:399–416.  https://doi.org/10.1016/j.immuni.2018.03.004CrossRefGoogle Scholar
  28. 28.
    Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7.  https://doi.org/10.1186/1471-2105-14-7CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA (2016) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259.  https://doi.org/10.1007/978-1-4939-7493-1_12CrossRefGoogle Scholar
  30. 30.
    Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220.  https://doi.org/10.1186/s13059-017-1349-1CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30:413–421.  https://doi.org/10.1038/nbt.2203CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu XS, Mardis ER (2017) Applications of Immunogenomics to cancer. Cell 168:600–612.  https://doi.org/10.1016/j.cell.2017.01.014CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A (2017) Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 17:61.  https://doi.org/10.1186/s12896-017-0379-9CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, Hemmers S, Putintseva EV, Obraztsova AS, Shugay M, Ataullakhanov RI, Rudensky AY, Schumacher TN, Chudakov DM (2017) Antigen receptor repertoire profiling from RNA-seq data. Nat Biotechnol 35:908–911.  https://doi.org/10.1038/nbt.3979CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jurtz VI, Olsen LR (2017) Computational methods for identification of T cell neoepitopes in tumors. Methods Mol Biol 1878:157–172.  https://doi.org/10.1007/978-1-4939-8868-6_9CrossRefGoogle Scholar
  36. 36.
    Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, Frampton GM (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34.  https://doi.org/10.1186/s13073-017-0424-2CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572–1573.  https://doi.org/10.1093/bioinformatics/btq170CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shen R, Tseng GC, Ghosh D, Zhou XJ (2013) A latent variable approach for integrative clustering of multiple genomic data types. In: Integrating omics data. Cambridge University Press, Cambridge, pp 155–173Google Scholar
  39. 39.
    Kedaigle AJ, Fraenkel E (2016) Discovering altered regulation and Signaling through network-based integration of transcriptomic, epigenomic, and proteomic tumor data. Methods Mol Biol 1711:13–26.  https://doi.org/10.1007/978-1-4939-7493-1_2CrossRefGoogle Scholar
  40. 40.
    Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R, Krogsdam AM, Waldner MJ, Bindea G, Mlecnik B, Galon J, Trajanoski Z (2015) Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol.  https://doi.org/10.1186/s13059-015-0620-6
  41. 41.
    Hackl H, Charoentong P, Finotello F, Trajanoski Z (2016) Computational genomics tools for dissecting tumour-immune cell interactions. Nat Rev Genet 17:441–458.  https://doi.org/10.1038/nrg.2016.67CrossRefPubMedGoogle Scholar
  42. 42.
    Li B, Li T, Pignon J-C, Wang B, Wang J, Shukla SA, Dou R, Chen Q, Hodi FS, Choueiri TK, Wu C, Hacohen N, Signoretti S, Liu JS, Liu XS (2016) Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat Genet 48:725–732.  https://doi.org/10.1038/ng.3581CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558.  https://doi.org/10.1038/s41591-018-0136-1CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute for Systems Biology, 401 Terry Avenue NorthSeattleUSA

Personalised recommendations