Advertisement

Microbiome as an Immunological Modifier

  • Manoj Kumar
  • Parul Singh
  • Selvasankar Murugesan
  • Marie Vetizou
  • John McCulloch
  • Jonathan H. Badger
  • Giorgio Trinchieri
  • Souhaila Al KhodorEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.

Key words

Microbiome Microbiota Metagenomics Dysbiosis Microbe–immune cell interactions 

References

  1. 1.
    Lederberg J, McCray AT (2001) Ome sweet omics: a genealogical treasury of words. Scientist 15:8Google Scholar
  2. 2.
    Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31PubMedPubMedCentralGoogle Scholar
  3. 3.
    Flint HJ (2012) The impact of nutrition on the human microbiome. Nutr Rev 70(Suppl 1):S10–S13PubMedGoogle Scholar
  4. 4.
    Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340PubMedGoogle Scholar
  5. 5.
    Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ochoa-Reparaz J, Kasper LH (2016) The second brain: is the gut microbiota a link between obesity and central nervous system disorders? Curr Obes Rep 5:51–64PubMedPubMedCentralGoogle Scholar
  7. 7.
    van Leeuwenhoek A (1684) An abstract of a letter from Antonie van Leeuwenhoek, Sep. 12, 1683. About animals in the scrurf of the teeth. Philos Trans R Soc Lond:568–574Google Scholar
  8. 8.
    Dobell C (1920) The discovery of the intestinal protozoa of man. Proc R Soc Med 13:1–15PubMedPubMedCentralGoogle Scholar
  9. 9.
    Group NHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, JE ME, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009) The NIH human microbiome project. Genome Res 19:2317–2323Google Scholar
  10. 10.
    Ehrlich SD, The MetaHIT Consortium (2011) MetaHIT: the European Union project on metagenomics of the human intestinal tract. In: Nelson KE (ed) Metagenomics of the human body. Springer, New York, pp 307–316Google Scholar
  11. 11.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedPubMedCentralGoogle Scholar
  12. 12.
    Human Microbiome Jumpstart Reference Strains C, Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, Rusch DB, Mitreva M, Sodergren E, Chinwalla AT, Feldgarden M, Gevers D, Haas BJ, Madupu R, Ward DV, Birren BW, Gibbs RA, Methe B, Petrosino JF, Strausberg RL, Sutton GG, White OR, Wilson RK, Durkin S, Giglio MG, Gujja S, Howarth C, Kodira CD, Kyrpides N, Mehta T, Muzny DM, Pearson M, Pepin K, Pati A, Qin X, Yandava C, Zeng Q, Zhang L, Berlin AM, Chen L, Hepburn TA, Johnson J, McCorrison J, Miller J, Minx P, Nusbaum C, Russ C, Sykes SM, Tomlinson CM et al (2010) A catalog of reference genomes from the human microbiome. Science 328:994–999Google Scholar
  13. 13.
    Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214Google Scholar
  14. 14.
    Al Khodor S, Reichert B, Shatat IF (2017) The microbiome and blood pressure: can microbes regulate our blood pressure? Front Pediatr 5:138PubMedPubMedCentralGoogle Scholar
  15. 15.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4680–4687PubMedGoogle Scholar
  17. 17.
    DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, Sun CL, Goltsman DS, Wong RJ, Shaw G, Stevenson DK, Holmes SP, Relman DA (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci U S A 112:11060–11065PubMedPubMedCentralGoogle Scholar
  18. 18.
    Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, Strauss JF, The Vaginal Microbiome C, Jefferson KK, Buck GA (2014) Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 160:2272–2282PubMedPubMedCentralGoogle Scholar
  19. 19.
    Cone RA (2014) Vaginal microbiota and sexually transmitted infections that may influence transmission of cell-associated HIV. J Infect Dis 210(Suppl 3):S616–S621PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WO (2010) Disordered microbial communities in asthmatic airways. PLoS One 5:e8578PubMedPubMedCentralGoogle Scholar
  21. 21.
    Toscano M, De Grandi R, Grossi E, Drago L (2017) Role of the human breast milk-associated microbiota on the newborns’ immune system: a mini review. Front Microbiol 8:2100PubMedPubMedCentralGoogle Scholar
  22. 22.
    Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65PubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang X, Buhimschi CS, Temoin S, Bhandari V, Han YW, Buhimschi IA (2013) Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS One 8:e56131PubMedPubMedCentralGoogle Scholar
  24. 24.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975PubMedPubMedCentralGoogle Scholar
  25. 25.
    Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7:e34242PubMedPubMedCentralGoogle Scholar
  26. 26.
    Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591PubMedGoogle Scholar
  27. 27.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedGoogle Scholar
  28. 28.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177PubMedPubMedCentralGoogle Scholar
  29. 29.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralGoogle Scholar
  30. 30.
    Backhed F (2011) Programming of host metabolism by the gut microbiota. Ann Nutr Metab 58(Suppl 2):44–52PubMedGoogle Scholar
  31. 31.
    Salminen S, Gibson GR, McCartney AL, Isolauri E (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53:1388–1389PubMedPubMedCentralGoogle Scholar
  32. 32.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Bjorksten B, Engstrand L, Andersson AF (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566PubMedGoogle Scholar
  33. 33.
    Fernandez L, Langa S, Martin V, Maldonado A, Jimenez E, Martin R, Rodriguez JM (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69:1–10PubMedGoogle Scholar
  34. 34.
    Collado MC, Delgado S, Maldonado A, Rodriguez JM (2009) Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol 48:523–528PubMedGoogle Scholar
  35. 35.
    Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67PubMedGoogle Scholar
  36. 36.
    Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA, Dore J, Other Members of the IT (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51:77–84PubMedGoogle Scholar
  37. 37.
    Rinne M, Kalliomaki M, Arvilommi H, Salminen S, Isolauri E (2005) Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr 147:186–191PubMedGoogle Scholar
  38. 38.
    Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280PubMedPubMedCentralGoogle Scholar
  39. 39.
    Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561PubMedGoogle Scholar
  40. 40.
    Chernikova DA, Koestler DC, Hoen AG, Housman ML, Hibberd PL, Moore JH, Morrison HG, Sogin ML, Zain-Ul-Abideen M, Madan JC (2016) Fetal exposures and perinatal influences on the stool microbiota of premature infants. J Matern Fetal Neonatal Med 29:99–105PubMedGoogle Scholar
  41. 41.
    Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, Murphy B, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2012) High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56:5811–5820PubMedPubMedCentralGoogle Scholar
  42. 42.
    Barrett E, Kerr C, Murphy K, O'Sullivan O, Ryan CA, Dempsey EM, Murphy BP, O'Toole PW, Cotter PD, Fitzgerald GF, Ross RP, Stanton C (2013) The individual-specific and diverse nature of the preterm infant microbiota. Arch Dis Child Fetal Neonatal Ed 98:F334–F340PubMedGoogle Scholar
  43. 43.
    Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, Antonopoulos DA, Chang EB, Claud EC (2009) 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 3:944–954PubMedPubMedCentralGoogle Scholar
  44. 44.
    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE (2014) Human genetics shape the gut microbiome. Cell 159:789–799PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, Shilo S, Lador D, Vila AV, Zmora N, Pevsner-Fischer M, Israeli D, Kosower N, Malka G, Wolf BC, Avnit-Sagi T, Lotan-Pompan M, Weinberger A, Halpern Z, Carmi S, Fu J, Wijmenga C, Zhernakova A, Elinav E, Segal E (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215PubMedGoogle Scholar
  46. 46.
    He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF, Chen MX, Chen ZH, Ji GY, Zheng ZD, Mujagond P, Chen XJ, Rong ZH, Chen P, Lyu LY, Wang X, Wu CB, Yu N, Xu YJ, Yin J, Raes J, Knight R, Ma WJ, Zhou HW (2018) Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24:1532–1535PubMedPubMedCentralGoogle Scholar
  47. 47.
    Gupta VK, Paul S, Dutta C (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 8:1162PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sepp E, Julge K, Vasar M, Naaber P, Bjorksten B, Mikelsaar M (1997) Intestinal microflora of Estonian and Swedish infants. Acta Paediatr 86:956–961PubMedGoogle Scholar
  49. 49.
    Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521PubMedGoogle Scholar
  50. 50.
    Tun HM, Konya T, Takaro TK, Brook JR, Chari R, Field CJ, Guttman DS, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Sears MR, Scott JA, Kozyrskyj AL, Investigators CS (2017) Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios. Microbiome 5:40PubMedPubMedCentralGoogle Scholar
  51. 51.
    Guan NMLL (2016) Gut microbiome and omics: a new definition to ruminant production and health. Anim Front 6:8–12Google Scholar
  52. 52.
    Van de Peer Y, Chapelle S, De Wachter R (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24:3381–3391PubMedPubMedCentralGoogle Scholar
  53. 53.
    Mullish BH, Osborne LS, Marchesi JR, McDonald JA (2018) The implementation of omics technologies in cancer microbiome research. Ecancermedicalscience 12:864PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tikhonov M, Leach RW, Wingreen NS (2015) Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J 9:68–80PubMedGoogle Scholar
  55. 55.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583PubMedPubMedCentralGoogle Scholar
  56. 56.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI (2013) The long-term stability of the human gut microbiota. Science 341:1237439PubMedPubMedCentralGoogle Scholar
  57. 57.
    Eren AM, Borisy GG, Huse SM, Mark Welch JL (2014) Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A 111:E2875–E2884PubMedPubMedCentralGoogle Scholar
  58. 58.
    Franzen O, Hu J, Bao X, Itzkowitz SH, Peter I, Bashir A (2015) Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering. Microbiome 3:43PubMedPubMedCentralGoogle Scholar
  59. 59.
    Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2Google Scholar
  60. 60.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072PubMedPubMedCentralGoogle Scholar
  61. 61.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596PubMedGoogle Scholar
  62. 62.
    Ciardo DE, Schar G, Bottger EC, Altwegg M, Bosshard PP (2006) Internal transcribed spacer sequencing versus biochemical profiling for identification of medically important yeasts. J Clin Microbiol 44:77–84PubMedPubMedCentralGoogle Scholar
  63. 63.
    Pryce TM, Palladino S, Price DM, Gardam DJ, Campbell PB, Christiansen KJ, Murray RJ (2006) Rapid identification of fungal pathogens in BacT/ALERT, BACTEC, and BBL MGIT media using polymerase chain reaction and DNA sequencing of the internal transcribed spacer regions. Diagn Microbiol Infect Dis 54:289–297PubMedGoogle Scholar
  64. 64.
    Rittenour WR, Ciaccio CE, Barnes CS, Kashon ML, Lemons AR, Beezhold DH, Green BJ (2014) Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments. Environ Sci Process Impacts 16:33–43PubMedPubMedCentralGoogle Scholar
  65. 65.
    Shittu OB, Adelaja OM, Obuotor TM, Sam-Wobo SO, Adenaike AS (2016) PCR-Internal Transcribed Spacer (ITS) genes sequencing and phylogenetic analysis of clinical and environmental Aspergillus species associated with HIV-TB co infected patients in a hospital in Abeokuta, southwestern Nigeria. Afr Health Sci 16:141–148PubMedPubMedCentralGoogle Scholar
  66. 66.
    Banos S, Lentendu G, Kopf A, Wubet T, Glockner FO, Reich M (2018) A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 18:190PubMedPubMedCentralGoogle Scholar
  67. 67.
    Cooper MK, Phalen DN, Donahoe SL, Rose K, Slapeta J (2016) The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate toxoplasma gondii among the cyst-forming coccidia. Vet Parasitol 216:38–45PubMedGoogle Scholar
  68. 68.
    De Filippis F, La Storia A, Blaiotta G (2017) Monitoring the mycobiota during Greco di Tufo and Aglianico wine fermentation by 18S rRNA gene sequencing. Food Microbiol 63:117–122PubMedGoogle Scholar
  69. 69.
    Dorigo U, Berard A, Humbert JF (2002) Comparison of eukaryotic phytobenthic community composition in a polluted river by partial 18S rRNA gene cloning and sequencing. Microb Ecol 44:372–380PubMedGoogle Scholar
  70. 70.
    Hancock JM, Vogler AP (1998) Modelling the secondary structures of slippage-prone hypervariable RNA regions: the example of the tiger beetle 18S rRNA variable region V4. Nucleic Acids Res 26:1689–1699PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hwang UW, Ree HI, Kim W (2000) Evolution of hypervariable regions, V4 and V7, of insect 18S rRNA and their phylogenetic implications. Zool Sci 17:111–121PubMedGoogle Scholar
  72. 72.
    Rosser TG, Griffin MJ, Quiniou SM, Khoo LH, Pote LM (2014) 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae). Parasitol Res 113:4651–4658PubMedGoogle Scholar
  73. 73.
    Saki J, Foroutan-Rad M, Asadpouri R (2016) Molecular characterization of cryptosporidium spp. in wild rodents of Southwestern Iran using 18s rRNA gene nested-PCR-RFLP and sequencing techniques. J Trop Med 2016:6834206PubMedPubMedCentralGoogle Scholar
  74. 74.
    Tanabe AS, Nagai S, Hida K, Yasuike M, Fujiwara A, Nakamura Y, Takano Y, Katakura S (2016) Comparative study of the validity of three regions of the 18S-rRNA gene for massively parallel sequencing-based monitoring of the planktonic eukaryote community. Mol Ecol Resour 16:402–414PubMedGoogle Scholar
  75. 75.
    Clooney AG, Fouhy F, Sleator RD, A OD, Stanton C, Cotter PD, Claesson MJ (2016) Comparing apples and oranges?: next generation sequencing and its impact on Microbiome analysis. PLoS One 11:e0148028PubMedPubMedCentralGoogle Scholar
  76. 76.
    Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methe B, Schloss PD, Gevers D, Mitreva M, Huttenhower C (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358PubMedPubMedCentralGoogle Scholar
  77. 77.
    Alves JM, Buck GA (2007) Automated system for gene annotation and metabolic pathway reconstruction using general sequence databases. Chem Biodivers 4:2593–2602PubMedGoogle Scholar
  78. 78.
    Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46PubMedPubMedCentralGoogle Scholar
  79. 79.
    Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong SY, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360PubMedGoogle Scholar
  80. 80.
    Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberon X, Del Pozo-Yauner L, Ochoa-Leyva A (2015) Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 13:390–401PubMedPubMedCentralGoogle Scholar
  81. 81.
    Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of Metatranscriptomics in Microbiome research. Bioinform Biol Insights 10:19–25PubMedPubMedCentralGoogle Scholar
  82. 82.
    Marco-Sola S, Sammeth M, Guigo R, Ribeca P (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9:1185–1188PubMedGoogle Scholar
  83. 83.
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578PubMedPubMedCentralGoogle Scholar
  84. 84.
    Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010:pdb prot5368PubMedGoogle Scholar
  85. 85.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedPubMedCentralGoogle Scholar
  86. 86.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120PubMedPubMedCentralGoogle Scholar
  87. 87.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703PubMedGoogle Scholar
  88. 88.
    Gratton J, Phetcharaburanin J, Mullish BH, Williams HR, Thursz M, Nicholson JK, Holmes E, Marchesi JR, Li JV (2016) Optimized sample handling strategy for metabolic profiling of human feces. Anal Chem 88:4661–4668PubMedGoogle Scholar
  89. 89.
    Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421PubMedPubMedCentralGoogle Scholar
  90. 90.
    Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212PubMedPubMedCentralGoogle Scholar
  91. 91.
    Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:1402–1414PubMedPubMedCentralGoogle Scholar
  92. 92.
    Donia MS, Fischbach MA (2015) HUMAN MICROBIOTA. Small molecules from the human microbiota. Science 349:1254766PubMedPubMedCentralGoogle Scholar
  93. 93.
    Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139PubMedGoogle Scholar
  94. 94.
    Degnan PH, Taga ME, Goodman AL (2014) Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 20:769–778PubMedPubMedCentralGoogle Scholar
  95. 95.
    Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C (2013) The role of menaquinones (vitamin K(2)) in human health. Br J Nutr 110:1357–1368PubMedGoogle Scholar
  96. 96.
    Biesalski HK (2016) Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci 1372:53–64PubMedGoogle Scholar
  97. 97.
    Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, Backhed F, Isolauri E, Salminen S, Ley RE (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedGoogle Scholar
  99. 99.
    Martin FP, Sprenger N, Montoliu I, Rezzi S, Kochhar S, Nicholson JK (2010) Dietary modulation of gut functional ecology studied by fecal metabonomics. J Proteome Res 9:5284–5295PubMedGoogle Scholar
  100. 100.
    Marcobal A, Yusufaly T, Higginbottom S, Snyder M, Sonnenburg JL, Mias GI (2015) Metabolome progression during early gut microbial colonization of gnotobiotic mice. Sci Rep 5:11589PubMedPubMedCentralGoogle Scholar
  101. 101.
    Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 19:349–359PubMedGoogle Scholar
  102. 102.
    Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci U S A 108:6252–6257PubMedPubMedCentralGoogle Scholar
  103. 103.
    Kumar M, Mathur T, Joshi V, Upadhyay DJ, Inoue SI, Masuda N (2018) Effect of DS-2969b, a novel GyrB inhibitor, on rat and monkey intestinal microbiota. Anaerobe 51:120–123PubMedGoogle Scholar
  104. 104.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedPubMedCentralGoogle Scholar
  105. 105.
    Takiishi T, Fenero CIM, Camara NOS (2017) Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5:e1373208PubMedPubMedCentralGoogle Scholar
  106. 106.
    Ouellette AJ (2011) Paneth cell alpha-defensins in enteric innate immunity. Cell Mol Life Sci 68:2215–2229PubMedPubMedCentralGoogle Scholar
  107. 107.
    Muniz LR, Knosp C, Yeretssian G (2012) Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol 3:310PubMedPubMedCentralGoogle Scholar
  108. 108.
    Mantis NJ, Forbes SJ (2010) Secretory IgA: arresting microbial pathogens at epithelial borders. Immunol Investig 39:383–406Google Scholar
  109. 109.
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21:8787–8803PubMedPubMedCentralGoogle Scholar
  110. 110.
    Gill N, Wlodarska M, Finlay BB (2011) Roadblocks in the gut: barriers to enteric infection. Cell Microbiol 13:660–669PubMedGoogle Scholar
  111. 111.
    Sun M, He C, Cong Y, Liu Z (2015) Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol 8:969–978PubMedPubMedCentralGoogle Scholar
  112. 112.
    Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95PubMedGoogle Scholar
  113. 113.
    Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97PubMedGoogle Scholar
  114. 114.
    Harris G, KuoLee R, Chen W (2006) Role of toll-like receptors in health and diseases of gastrointestinal tract. World J Gastroenterol 12:2149–2160PubMedPubMedCentralGoogle Scholar
  115. 115.
    Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273, Table of ContentsPubMedPubMedCentralGoogle Scholar
  116. 116.
    Newman MA, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139PubMedPubMedCentralGoogle Scholar
  117. 117.
    Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436PubMedPubMedCentralGoogle Scholar
  118. 118.
    Dicksved J, Schreiber O, Willing B, Petersson J, Rang S, Phillipson M, Holm L, Roos S (2012) Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PLoS One 7:e46399PubMedPubMedCentralGoogle Scholar
  119. 119.
    Lin PW, Nasr TR, Berardinelli AJ, Kumar A, Neish AS (2008) The probiotic lactobacillus GG may augment intestinal host defense by regulating apoptosis and promoting cytoprotective responses in the developing murine gut. Pediatr Res 64:511–516PubMedPubMedCentralGoogle Scholar
  120. 120.
    Fukui H (2016) Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intest Dis 1:135–145PubMedPubMedCentralGoogle Scholar
  121. 121.
    Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276PubMedPubMedCentralGoogle Scholar
  122. 122.
    Gareau MG, Silva MA, Perdue MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8:274–281PubMedGoogle Scholar
  123. 123.
    Maes M, Twisk FN, Kubera M, Ringel K, Leunis JC, Geffard M (2012) Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord 136:909–917PubMedGoogle Scholar
  124. 124.
    Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J (2012) Histamine derived from probiotic lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 7:e31951PubMedPubMedCentralGoogle Scholar
  125. 125.
    Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM (2009) L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res 2:45–60PubMedPubMedCentralGoogle Scholar
  126. 126.
    Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143–151PubMedGoogle Scholar
  127. 127.
    Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43:164–174PubMedGoogle Scholar
  128. 128.
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385PubMedGoogle Scholar
  129. 129.
    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M, Alvarez JI, Kebir H, Anandasabapathy N, Izquierdo G, Jung S, Obholzer N, Pochet N, Clish CB, Prinz M, Prat A, Antel J, Quintana FJ (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22:586–597PubMedPubMedCentralGoogle Scholar
  130. 130.
    Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, Wild B, Camargo SM, Singer D, Richter A, Kuba K, Fukamizu A, Schreiber S, Clevers H, Verrey F, Rosenstiel P, Penninger JM (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487:477–481PubMedGoogle Scholar
  131. 131.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267PubMedGoogle Scholar
  132. 132.
    Pisetsky DS (1996) Immune activation by bacterial DNA: a new genetic code. Immunity 5:303–310PubMedGoogle Scholar
  133. 133.
    Bird AP (1987) CpG islands as gene markers in the vertebrate nucleus. Trends Genet:342–346Google Scholar
  134. 134.
    Kumar M, Khan FG, Sharma S, Kumar R, Faujdar J, Sharma R, Chauhan DS, Singh R, Magotra SK, Khan IA (2011) Identification of mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathog 50:31–38PubMedGoogle Scholar
  135. 135.
    Hergersberg M (1991) Biological aspects of cytosine methylation in eukaryotic cells. Experientia 47:1171–1185PubMedGoogle Scholar
  136. 136.
    Krieg AM (2006) Therapeutic potential of toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484PubMedGoogle Scholar
  137. 137.
    McClure R, Massari P (2014) TLR-dependent Human mucosal epithelial cell responses to microbial pathogens. Front Immunol 5:386PubMedPubMedCentralGoogle Scholar
  138. 138.
    Messina JP, Gilkeson GS, Pisetsky DS (1991) Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J Immunol 147:1759–1764PubMedGoogle Scholar
  139. 139.
    Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157:1840–1845PubMedGoogle Scholar
  140. 140.
    O'Hara JR, Feener TD, Fischer CD, Buret AG (2012) Campylobacter jejuni disrupts protective toll-like receptor 9 signaling in colonic epithelial cells and increases the severity of dextran sulfate sodium-induced colitis in mice. Infect Immun 80:1563–1571PubMedPubMedCentralGoogle Scholar
  141. 141.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273PubMedPubMedCentralGoogle Scholar
  142. 142.
    Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40:833–842PubMedGoogle Scholar
  143. 143.
    Soto M, Herzog C, Pacheco JA, Fujisaka S, Bullock K, Clish CB, Kahn CR (2018) Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Mol Psychiatry 23:2287–2301PubMedPubMedCentralGoogle Scholar
  144. 144.
    van de Wouw M, Schellekens H, Dinan TG, Cryan JF (2017) Microbiota-gut-brain Axis: modulator of host metabolism and appetite. J Nutr 147:727–745PubMedGoogle Scholar
  145. 145.
    Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W (2011) The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 10:5512–5522PubMedGoogle Scholar
  146. 146.
    Gaudet RG, Sintsova A, Buckwalter CM, Leung N, Cochrane A, Li J, Cox AD, Moffat J, Gray-Owen SD (2015) INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 348:1251–1255PubMedGoogle Scholar
  147. 147.
    Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW, Naik S, Wohlfert EA, Chou DB, Oldenhove G, Robinson M, Grigg ME, Kastenmayer R, Schwartzberg PL, Belkaid Y (2011) Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha. Immunity 34:435–447PubMedPubMedCentralGoogle Scholar
  148. 148.
    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, Brot L, Taleb S, Couturier-Maillard A, Nion-Larmurier I, Merabtene F, Seksik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L, Launay JM, Langella P, Xavier RJ, Sokol H (2016) CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22:598–605PubMedPubMedCentralGoogle Scholar
  149. 149.
    Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526PubMedPubMedCentralGoogle Scholar
  150. 150.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455PubMedPubMedCentralGoogle Scholar
  151. 151.
    Sanderson IR (2004) Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J Nutr 134:2450S–2454SPubMedGoogle Scholar
  152. 152.
    Gaudier E, Jarry A, Blottiere HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C, Hoebler C (2004) Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 287:G1168–G1174PubMedGoogle Scholar
  153. 153.
    Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M (2013) Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11:61PubMedPubMedCentralGoogle Scholar
  154. 154.
    Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M, Shapiro H, Christ A, Harmelin A, Halpern Z, Latz E, Flavell RA, Amit I, Segal E, Elinav E (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428–1443PubMedPubMedCentralGoogle Scholar
  155. 155.
    Blacher E, Levy M, Tatirovsky E, Elinav E (2017) Microbiome-modulated metabolites at the Interface of host immunity. J Immunol 198:572–580PubMedGoogle Scholar
  156. 156.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139PubMedPubMedCentralGoogle Scholar
  157. 157.
    Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547PubMedGoogle Scholar
  158. 158.
    Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A 108:5354–5359PubMedPubMedCentralGoogle Scholar
  159. 159.
    Schluter J, Foster KR (2012) The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol 10:e1001424PubMedPubMedCentralGoogle Scholar
  160. 160.
    Kostic AD, Howitt MR, Garrett WS (2013) Exploring host-microbiota interactions in animal models and humans. Genes Dev 27:701–718PubMedPubMedCentralGoogle Scholar
  161. 161.
    Calatayud M, Dezutter O, Hernandez-Sanabria E, Hidalgo-Martinez S, Meysman FJR, Van de Wiele T (2019) Development of a host-microbiome model of the small intestine. FASEB J 33(3):3985–3996.  https://doi.org/10.1096/fj.201801414R:fj201801414RCrossRefPubMedGoogle Scholar
  162. 162.
    Wang B, Li J, Li Q, Zhang H, Li N (2009) Isolation of adhesive strains and evaluation of the colonization and immune response by lactobacillus plantarum L2 in the rat gastrointestinal tract. Int J Food Microbiol 132:59–66PubMedGoogle Scholar
  163. 163.
    Yadav M, Verma MK, Chauhan NS (2018) A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 200:203–217PubMedGoogle Scholar
  164. 164.
    Lea T (2015) Caco-2 cell line. In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bioactives on health: in vitro and ex vivo models. Springer, Cham (CH), pp 103–111.  https://doi.org/10.1007/978-3-319-16104-4_10CrossRefGoogle Scholar
  165. 165.
    Bahrami B, Child MW, Macfarlane S, Macfarlane GT (2011) Adherence and cytokine induction in Caco-2 cells by bacterial populations from a three-stage continuous-culture model of the large intestine. Appl Environ Microbiol 77:2934–2942PubMedPubMedCentralGoogle Scholar
  166. 166.
    Zenhom M, Hyder A, de Vrese M, Heller KJ, Roeder T, Schrezenmeir J (2011) Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARgamma and peptidoglycan recognition protein 3. J Nutr 141:971–977PubMedGoogle Scholar
  167. 167.
    Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226PubMedGoogle Scholar
  168. 168.
    Pearce SC, Al-Jawadi A, Kishida K, Yu S, Hu M, Fritzky LF, Edelblum KL, Gao N, Ferraris RP (2018) Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biol 16:19PubMedPubMedCentralGoogle Scholar
  169. 169.
    Pham VT, Seifert N, Richard N, Raederstorff D, Steinert R, Prudence K, Mohajeri MH (2018) The effects of fermentation products of prebiotic fibres on gut barrier and immune functions in vitro. PeerJ 6:e5288PubMedPubMedCentralGoogle Scholar
  170. 170.
    Nepelska M, Cultrone A, Beguet-Crespel F, Le Roux K, Dore J, Arulampalam V, Blottiere HM (2012) Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells. PLoS One 7:e52869PubMedPubMedCentralGoogle Scholar
  171. 171.
    Norouzi Z, Salimi A, Halabian R, Fahimi H (2018) Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb Pathog 123:183–189PubMedGoogle Scholar
  172. 172.
    Brosnahan AJ, Brown DR (2012) Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Vet Microbiol 156:229–237PubMedGoogle Scholar
  173. 173.
    Vergauwen H (2015) The IPEC-J2 cell line. In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bioactives on health: in vitro and ex vivo models. Springer, Cham (CH), pp 125–134.  https://doi.org/10.1007/978-3-319-16104-4_12CrossRefGoogle Scholar
  174. 174.
    Yan H, Ajuwon KM (2017) Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12:e0179586PubMedPubMedCentralGoogle Scholar
  175. 175.
    Liu HY, Roos S, Jonsson H, Ahl D, Dicksved J, Lindberg JE, Lundh T (2015) Effects of lactobacillus johnsonii and lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Phys Rep 3(4):e12355Google Scholar
  176. 176.
    Cinova J, De Palma G, Stepankova R, Kofronova O, Kverka M, Sanz Y, Tuckova L (2011) Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One 6:e16169PubMedPubMedCentralGoogle Scholar
  177. 177.
    Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2010) Human-derived probiotic lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 299:G1087–G1096PubMedPubMedCentralGoogle Scholar
  178. 178.
    Ren H, Musch MW, Kojima K, Boone D, Ma A, Chang EB (2001) Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells. Gastroenterology 121:631–639PubMedGoogle Scholar
  179. 179.
    Lin R, Jiang Y, Zhao XY, Guan Y, Qian W, Fu XC, Ren HY, Hou XH (2014) Four types of Bifidobacteria trigger autophagy response in intestinal epithelial cells. J Dig Dis 15:597–605PubMedGoogle Scholar
  180. 180.
    Clift MJ, Gehr P, Rothen-Rutishauser B (2011) Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol 85:723–731PubMedGoogle Scholar
  181. 181.
    Bothe MK, Maathuis AJH, Bellmann S, van der Vossen J, Berressem D, Koehler A, Schwejda-Guettes S, Gaigg B, Kuchinka-Koch A, Stover JF (2017) Dose-dependent prebiotic effect of lactulose in a computer-controlled in vitro model of the human large intestine. Nutrients 9Google Scholar
  182. 182.
    Isenmann R, Schwarz M, Rozdzinski E, Marre R, Beger HG (2000) Aggregation substance promotes colonic mucosal invasion of Enterococcus faecalis in an ex vivo model. J Surg Res 89:132–138PubMedGoogle Scholar
  183. 183.
    Chen HQ, Yang J, Zhang M, Zhou YK, Shen TY, Chu ZX, Zhang M, Hang XM, Jiang YQ, Qin HL (2010) Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol 299:G1287–G1297PubMedGoogle Scholar
  184. 184.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265Google Scholar
  185. 185.
    Workman MJ, Gleeson JP, Troisi EJ, Estrada HQ, Kerns SJ, Hinojosa CD, Hamilton GA, Targan SR, Svendsen CN, Barrett RJ (2018) Enhanced utilization of induced pluripotent stem cell-derived Human intestinal Organoids using microengineered chips. Cell Mol Gastroenterol Hepatol 5:669–677.e2PubMedGoogle Scholar
  186. 186.
    Pearce SC, Coia HG, Karl JP, Pantoja-Feliciano IG, Zachos NC, Racicot K (2018) Intestinal in vitro and ex vivo models to study host-microbiome interactions and acute stressors. Front Physiol 9:1584PubMedPubMedCentralGoogle Scholar
  187. 187.
    Rajan A, Vela L, Zeng XL, Yu X, Shroyer N, Blutt SE, Poole NM, Carlin LG, Nataro JP, Estes MK, Okhuysen PC, Maresso AW (2018) Novel segment- and host-specific patterns of enteroaggregative escherichia coli adherence to Human intestinal Enteroids. MBio 9Google Scholar
  188. 188.
    Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC (2017) A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep 7:45270PubMedPubMedCentralGoogle Scholar
  189. 189.
    Zomer-van Ommen DD, Pukin AV, Fu O, Quarles van Ufford LH, Janssens HM, Beekman JM, Pieters RJ (2016) Functional characterization of cholera toxin inhibitors using Human intestinal organoids. J Med Chem 59:6968–6972PubMedGoogle Scholar
  190. 190.
    Aoki-Yoshida A, Saito S, Fukiya S, Aoki R, Takayama Y, Suzuki C, Sonoyama K (2016) Lactobacillus rhamnosus GG increases toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Benefic Microbes 7:421–429Google Scholar
  191. 191.
    Pierzchalska M, Panek M, Czyrnek M, Gielicz A, Mickowska B, Grabacka M (2017) Probiotic lactobacillus acidophilus bacteria or synthetic TLR2 agonist boost the growth of chicken embryo intestinal organoids in cultures comprising epithelial cells and myofibroblasts. Comp Immunol Microbiol Infect Dis 53:7–18PubMedGoogle Scholar
  192. 192.
    Engevik MA, Aihara E, Montrose MH, Shull GE, Hassett DJ, Worrell RT (2013) Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol 305:G697–G711PubMedPubMedCentralGoogle Scholar
  193. 193.
    O'Callaghan D, Vergunst A (2010) Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 13:79–85PubMedGoogle Scholar
  194. 194.
    Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse drosophila species: ecological context of a host-microbe model system. PLoS Genet 7:e1002272PubMedPubMedCentralGoogle Scholar
  195. 195.
    Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674PubMedGoogle Scholar
  196. 196.
    Iatsenko I, Boquete JP, Lemaitre B (2018) Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens drosophila lifespan. Immunity 49:929–942.e5PubMedGoogle Scholar
  197. 197.
    Trinder M, Daisley BA, Dube JS, Reid G (2017) Drosophila melanogaster as a high-throughput model for host-microbiota interactions. Front Microbiol 8:751PubMedPubMedCentralGoogle Scholar
  198. 198.
    Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608PubMedPubMedCentralGoogle Scholar
  199. 199.
    Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386PubMedGoogle Scholar
  200. 200.
    Reinhardt C, Bergentall M, Greiner TU, Schaffner F, Ostergren-Lunden G, Petersen LC, Ruf W, Backhed F (2012) Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483:627–631PubMedGoogle Scholar
  201. 201.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548–554PubMedPubMedCentralGoogle Scholar
  202. 202.
    Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052PubMedGoogle Scholar
  203. 203.
    Schrumpf E, Kummen M, Valestrand L, Greiner TU, Holm K, Arulampalam V, Reims HM, Baines J, Backhed F, Karlsen TH, Blumberg RS, Hov JR, Melum E (2017) The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. J Hepatol 66:382–389PubMedGoogle Scholar
  204. 204.
    Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290PubMedGoogle Scholar
  205. 205.
    Gordon HA, Pesti L (1971) The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 35:390–429PubMedPubMedCentralGoogle Scholar
  206. 206.
    Lee A, Gordon J, Lee CJ, Dubos R (1971) The mouse intestinal microflora with emphasis on the strict anaerobes. J Exp Med 133:339–352PubMedPubMedCentralGoogle Scholar
  207. 207.
    Wang B, Yao M, Lv L, Ling Z, Li L (2017) The human microbiota in health and disease. Engineering 3:71–82Google Scholar
  208. 208.
    Al Khodor S, Shatat IF (2017) Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol 32:921–931PubMedGoogle Scholar
  209. 209.
    Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232PubMedGoogle Scholar
  210. 210.
    Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, Randall TA, Galanko J, Benson A, Sandler RS, Rawls JF, Abdo Z, Fodor AA, Keku TO (2012) Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J 6:1858–1868PubMedPubMedCentralGoogle Scholar
  211. 211.
    Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, Holt RA (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306PubMedPubMedCentralGoogle Scholar
  212. 212.
    Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, Schloss PD (2013) The gut microbiome modulates colon tumorigenesis. MBio 4:e00692–e00613PubMedPubMedCentralGoogle Scholar
  213. 213.
    Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, Xia H, Xu X, Jie Z, Su L, Li X, Li X, Li J, Xiao L, Huber-Schonauer U, Niederseer D, Xu X, Al-Aama JY, Yang H, Wang J, Kristiansen K, Arumugam M, Tilg H, Datz C, Wang J (2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 6:6528PubMedGoogle Scholar
  214. 214.
    Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206PubMedPubMedCentralGoogle Scholar
  215. 215.
    Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215PubMedPubMedCentralGoogle Scholar
  216. 216.
    Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G (2017) Microbes and cancer. Annu Rev Immunol 35:199–228PubMedGoogle Scholar
  217. 217.
    Anonymous (1994) Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61:1–241Google Scholar
  218. 218.
    Sears CL, Garrett WS (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe 15:317–328PubMedPubMedCentralGoogle Scholar
  219. 219.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141PubMedPubMedCentralGoogle Scholar
  220. 220.
    Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY (2017) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170:548–563.e16PubMedPubMedCentralGoogle Scholar
  221. 221.
    Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, Shussman N, Almogy G, Cuapio A, Hofer E, Mevorach D, Tabib A, Ortenberg R, Markel G, Miklic K, Jonjic S, Brennan CA, Garrett WS, Bachrach G, Mandelboim O (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355PubMedPubMedCentralGoogle Scholar
  222. 222.
    Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, Stein E, Vadivelu J, Roslani AC, Malik AA, Wanyiri JW, Goh KL, Thevambiga I, Fu K, Wan F, Llosa N, Housseau F, Romans K, Wu X, McAllister FM, Wu S, Vogelstein B, Kinzler KW, Pardoll DM, Sears CL (2014) Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 111:18321–18326PubMedPubMedCentralGoogle Scholar
  223. 223.
    Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM, Uritboonthai W, Goetz L, Casero RA Jr, Pardoll DM, White JR, Patti GJ, Sears CL, Siuzdak G (2015) Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21:891–897PubMedPubMedCentralGoogle Scholar
  224. 224.
    Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, Neuberg D, Huang K, Guevara F, Nelson T, Chipashvili O, Hagan T, Walker M, Ramachandran A, Diosdado B, Serna G, Mulet N, Landolfi S, Ramon YCS, Fasani R, Aguirre AJ, Ng K, Elez E, Ogino S, Tabernero J, Fuchs CS, Hahn WC, Nuciforo P, Meyerson M (2017) Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:1443–1448PubMedPubMedCentralGoogle Scholar
  225. 225.
    Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123PubMedPubMedCentralGoogle Scholar
  226. 226.
    Uittamo J, Siikala E, Kaihovaara P, Salaspuro M, Rautemaa R (2009) Chronic candidosis and oral cancer in APECED-patients: production of carcinogenic acetaldehyde from glucose and ethanol by Candida albicans. Int J Cancer 124:754–756PubMedGoogle Scholar
  227. 227.
    Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–1333PubMedPubMedCentralGoogle Scholar
  228. 228.
    Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10:324–335PubMedPubMedCentralGoogle Scholar
  229. 229.
    Nowak A, Czyzowska A, Huben K, Sojka M, Kuberski S, Otlewska A, Slizewska K (2016) Prebiotics and age, but not probiotics affect the transformation of 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) by fecal microbiota - an in vitro study. Anaerobe 39:124–135PubMedGoogle Scholar
  230. 230.
    Poutahidis T, Cappelle K, Levkovich T, Lee CW, Doulberis M, Ge Z, Fox JG, Horwitz BH, Erdman SE (2013) Pathogenic intestinal bacteria enhance prostate cancer development via systemic activation of immune cells in mice. PLoS One 8:e73933PubMedPubMedCentralGoogle Scholar
  231. 231.
    Rao VP, Poutahidis T, Ge Z, Nambiar PR, Boussahmain C, Wang YY, Horwitz BH, Fox JG, Erdman SE (2006) Innate immune inflammatory response against enteric bacteria helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res 66:7395–7400PubMedGoogle Scholar
  232. 232.
    Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, Yang JI, Soto PA, Presley LL, Reliene R, Westbrook AM, Wei B, Loy A, Chang C, Braun J, Borneman J, Schiestl RH (2013) Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res 73:4222–4232PubMedPubMedCentralGoogle Scholar
  233. 233.
    Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, Thaiss CA, Reuben A, Livny J, Avraham R, Frederick DT, Ligorio M, Chatman K, Johnston SE, Mosher CM, Brandis AM, Fuks G, Gurbatri C, Gopalakrishnan V, Kim M, Hurd MW, Katz M, Fleming J, Maitra A, Smith DA, Skalak M, Bu J, Michaud M, Trauger SA, Barshack I, Golan T, Sandbank J, Flaherty KT, Mandinova A, Garrett WS, Thayer SP, Ferrone CR, Huttenhower C, Bhatia SN, Gevers D, Wargo JA, Golub TR, Straussman R (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357:1156–1160PubMedPubMedCentralGoogle Scholar
  234. 234.
    Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, Werba G, Zhang K, Guo Y, Li Q, Akkad N, Lall S, Wadowski B, Gutierrez J, Kochen Rossi JA, Herzog JW, Diskin B, Torres-Hernandez A, Leinwand J, Wang W, Taunk PS, Savadkar S, Janal M, Saxena A, Li X, Cohen D, Sartor RB, Saxena D, Miller G (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–416PubMedPubMedCentralGoogle Scholar
  235. 235.
    Choy ATF, Carnevale I, Coppola S, Meijer LL, Kazemier G, Zaura E, Deng D, Giovannetti E (2018) The microbiome of pancreatic cancer: from molecular diagnostics to new therapeutic approaches to overcome chemoresistance caused by metabolic inactivation of gemcitabine. Expert Rev Mol Diagn.  https://doi.org/10.1080/14737159.2018.1544495:1-5
  236. 236.
    Greathouse KL, White JR, Vargas AJ, Bliskovsky VV, Beck JA, von Muhlinen N, Polley EC, Bowman ED, Khan MA, Robles AI, Cooks T, Ryan BM, Padgett N, Dzutsev AH, Trinchieri G, Pineda MA, Bilke S, Meltzer PS, Hokenstad AN, Stickrod TM, Walther-Antonio MR, Earl JP, Mell JC, Krol JE, Balashov SV, Bhat AS, Ehrlich GD, Valm A, Deming C, Conlan S, Oh J, Segre JA, Harris CC (2018) Interaction between the microbiome and TP53 in human lung cancer. Genome Biol 19:123PubMedPubMedCentralGoogle Scholar
  237. 237.
    Coley WB (1893) Treatment of malignant tumors by repeated inoculation of erysipelas, with a report of 10 cases. Am J Med Sci 105:487–564Google Scholar
  238. 238.
    Tang DH, Chang SS (2015) Management of carcinoma in situ of the bladder: best practice and recent developments. Ther Adv Urol 7:351–364PubMedPubMedCentralGoogle Scholar
  239. 239.
    Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794PubMedPubMedCentralGoogle Scholar
  240. 240.
    Bettegowda C, Dang LH, Abrams R, Huso DL, Dillehay L, Cheong I, Agrawal N, Borzillary S, McCaffery JM, Watson EL, Lin KS, Bunz F, Baidoo K, Pomper MG, Kinzler KW, Vogelstein B, Zhou S (2003) Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc Natl Acad Sci U S A 100:15083–15088PubMedPubMedCentralGoogle Scholar
  241. 241.
    Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98:15155–15160PubMedPubMedCentralGoogle Scholar
  242. 242.
    Mlynarczyk GS, Berg CA, Withrock IC, Fick ME, Anderson SJ, Laboissonniere LA, Jefferson MA, Brewer MT, Stock ML, Lange JK, Luna KC, Acharya S, Kanuri S, Sharma S, Kondru NC, McCormack GR, Carlson SA (2014) Salmonella as a biological "Trojan horse" for neoplasia: future possibilities including brain cancer. Med Hypotheses 83:343–345PubMedGoogle Scholar
  243. 243.
    Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17:271–285PubMedPubMedCentralGoogle Scholar
  244. 244.
    Li H, Jia W (2013) Cometabolism of microbes and host: implications for drug metabolism and drug-induced toxicity. Clin Pharmacol Ther 94:574–581PubMedGoogle Scholar
  245. 245.
    Wilson ID, Nicholson JK (2016) Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res.  https://doi.org/10.1016/j.trsl.2016.08.002PubMedGoogle Scholar
  246. 246.
    Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50PubMedPubMedCentralGoogle Scholar
  247. 247.
    Haiser HJ, Turnbaugh PJ (2013) Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 69:21–31PubMedGoogle Scholar
  248. 248.
    Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 4:e6958PubMedPubMedCentralGoogle Scholar
  249. 249.
    Selwyn FP, Cheng SL, Klaassen CD, Cui JY (2016) Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos 44:262–274PubMedPubMedCentralGoogle Scholar
  250. 250.
    Selwyn FP, Cheng SL, Bammler TK, Prasad B, Vrana M, Klaassen C, Cui JY (2015) Developmental regulation of drug-processing genes in livers of germ-free mice. Toxicol Sci 147:84–103PubMedPubMedCentralGoogle Scholar
  251. 251.
    Yip LY, Chan EC (2015) Investigation of host-gut microbiota modulation of therapeutic outcome. Drug Metab Dispos 43:1619–1631PubMedGoogle Scholar
  252. 252.
    Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14:273–287PubMedPubMedCentralGoogle Scholar
  253. 253.
    Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO, Reid G, Urbaniak C, Byrne WL, Tangney M (2015) Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep 5:14554PubMedPubMedCentralGoogle Scholar
  254. 254.
    Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967–970PubMedPubMedCentralGoogle Scholar
  255. 255.
    Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH (2015) Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res 14:5642–5651PubMedGoogle Scholar
  256. 256.
    Wang Y, Luo X, Pan H, Huang W, Wang X, Wen H, Shen K, Jin B (2015) Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism. Food Chem Toxicol 83:251–260PubMedGoogle Scholar
  257. 257.
    Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Berard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Dore J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976PubMedPubMedCentralGoogle Scholar
  258. 258.
    Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084PubMedPubMedCentralGoogle Scholar
  259. 259.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089PubMedPubMedCentralGoogle Scholar
  260. 260.
    Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, Palmer DC, Boni A, Muranski P, Yu Z, Gattinoni L, Antony PA, Rosenberg SA, Restifo NP (2007) Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 117:2197–2204PubMedPubMedCentralGoogle Scholar
  261. 261.
    Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446PubMedGoogle Scholar
  262. 262.
    Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, Lienenklaus S, Weiss S, Staeheli P, Aichele P, Diefenbach A (2012) Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37:171–186PubMedGoogle Scholar
  263. 263.
    Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O'Neill LA, Xavier RJ (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098PubMedPubMedCentralGoogle Scholar
  264. 264.
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Sloane RS, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Sanchez EMR, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 539:97–103Google Scholar
  265. 265.
    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359:104–108PubMedPubMedCentralGoogle Scholar
  266. 266.
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot N, Qu B, Ferrere G, Clemenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97PubMedGoogle Scholar
  267. 267.
    Wang Y, Wiesnoski DH, Helmink BA, Gopalakrishnan V, Choi K, DuPont HL, Jiang ZD, Abu-Sbeih H, Sanchez CA, Chang CC, Parra ER, Francisco-Cruz A, Raju GS, Stroehlein JR, Campbell MT, Gao J, Subudhi SK, Maru DM, Blando JM, Lazar AJ, Allison JP, Sharma P, Tetzlaff MT, Wargo JA, Jenq RR (2018) Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med 24:1804–1808PubMedGoogle Scholar
  268. 268.
    Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, Pamer EG, Wolchok JD (2016) Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 7:10391PubMedPubMedCentralGoogle Scholar
  269. 269.
    Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, Vaysse T, Marthey L, Eggermont A, Asvatourian V, Lanoy E, Mateus C, Robert C, Carbonnel F (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28:1368–1379PubMedGoogle Scholar
  270. 270.
    Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, Koh AY (2017) Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific Human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19:848–855PubMedPubMedCentralGoogle Scholar
  271. 271.
    Gharaibeh RZ, Jobin C (2018) Microbiota and cancer immunotherapy: in search of microbial signals. Gut.  https://doi.org/10.1136/gutjnl-2018-317220PubMedCentralGoogle Scholar
  272. 272.
    Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, Rouche JA, Zitvogel L, Zalcman G, Albiges L, Escudier B, Routy B (2018) Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 29:1437–1444PubMedPubMedCentralGoogle Scholar
  273. 273.
    Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN, Francois F, Perez-Perez GI, Loke MF, Goh KL, Vadivelu J (2016) Helicobacter pylori eradication causes perturbation of the human gut microbiome in young adults. PLoS One 11:e0151893PubMedPubMedCentralGoogle Scholar
  274. 274.
    Fox JG, Wang TC (2007) Inflammation, atrophy, and gastric cancer. J Clin Invest 117:60–69PubMedGoogle Scholar
  275. 275.
    Atherton JC, Blaser MJ (2009) Coadaptation of helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 119:2475–2487PubMedPubMedCentralGoogle Scholar
  276. 276.
    Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, Yang J, Dou R, Masugi Y, Song M, Kostic AD, Giannakis M, Bullman S, Milner DA, Baba H, Giovannucci EL, Garraway LA, Freeman GJ, Dranoff G, Garrett WS, Huttenhower C, Meyerson M, Meyerhardt JA, Chan AT, Fuchs CS, Ogino S (2015) Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut.  https://doi.org/10.1136/gutjnl-2015-310101PubMedPubMedCentralGoogle Scholar
  277. 277.
    Lu H, Ren Z, Li A, Zhang H, Jiang J, Xu S, Luo Q, Zhou K, Sun X, Zheng S, Li L (2016) Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci Rep 6:33142PubMedPubMedCentralGoogle Scholar
  278. 278.
    Ren Z, Li A, Li J, Xu S, Zhang H, Jiang J, Yang J, Luo Q, Zhou K, Zheng S, Li L (2019) Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls AU-Lu, Haifeng. J Oral Microbiol 11:1563409PubMedPubMedCentralGoogle Scholar
  279. 279.
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028.e13PubMedGoogle Scholar
  280. 280.
    Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A, Sekaly RP, Jenkins MK, Vezys V, Haining WN, Jameson SC, Masopust D (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:512–516PubMedPubMedCentralGoogle Scholar
  281. 281.
    Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ (2019) Clinical application and potential of Fecal microbiota transplantation. Annu Rev Med 70:335–351Google Scholar
  282. 282.
    Allen-Vercoe E, Petrof EO (2015) Using bugs as drugs: microbial ecosystem therapeutics. Can Commun Dis Rep 45:3–6PubMedPubMedCentralGoogle Scholar
  283. 283.
    Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, Shiota A, Takeshita K, Yasuma-Mitobe K, Riethmacher D, Kaisho T, Norman JM, Mucida D, Suematsu M, Yaguchi T, Bucci V, Inoue T, Kawakami Y, Olle B, Roberts B, Hattori M, Xavier RJ, Atarashi K, Honda K (2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565:600–605.  https://doi.org/10.1038/s41586-019-0878-zCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Manoj Kumar
    • 1
  • Parul Singh
    • 1
  • Selvasankar Murugesan
    • 1
  • Marie Vetizou
    • 2
  • John McCulloch
    • 2
  • Jonathan H. Badger
    • 2
  • Giorgio Trinchieri
    • 2
  • Souhaila Al Khodor
    • 1
    Email author
  1. 1.Division of Translational Medicine, Research DepartmentSidra MedicineDohaQatar
  2. 2.Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations