Multiplex Immunofluorescence Assays

  • Alejandro Francisco-Cruz
  • Edwin Roger Parra
  • Michael T. Tetzlaff
  • Ignacio I. WistubaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)


Multiplexed imaging platforms to simultaneously detect multiple epitopes in the same tissue section emerged in the last years as very powerful tools to study tumor immune contexture. These revolutionary technologies are providing a deep methodology for tumor evaluation in formalin-fixed and paraffin-embedded (FFPE) to improve the understanding of tumor microenvironment, new targets for treatment, prognostic and predictive biomarkers, and translational studies. Multiplexed imaging platforms allow for the identification of several antigens simultaneously from a single tissue section, core needle biopsies, and tissue microarrays. In recent years, multiplexed imaging has improved the abilities to characterize the different types of cell populations in malignant and non-malignant tissues, and their spatial distribution in relationship to clinical outcomes. Multiplexed technologies associated with digital image analysis software offer a high-quality throughput assay to study cancer specimens at multiple time points before, during and after treatment. The aim of this chapter is to provide a review of multiplexed imaging covering its fundamentals, advantages, disadvantages, and material and methods for staining applied to FFPE tumor tissues and focusing on the use of multiplex immunofluorescence with tyramine signal amplification staining for immune profiling and translational research.

Key words

Tyramide signal amplification Immune-profiling Cancer tissue Digital image analysis 


  1. 1.
    Steiner C, Ducret A, Tille JC, Thomas M, McKee TA, Rubbia-Brandt L et al (2014) Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics 14(4–5):441–451PubMedPubMedCentralGoogle Scholar
  2. 2.
    Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK et al (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom 21(3):338–347PubMedGoogle Scholar
  3. 3.
    Sood A, Miller AM, Brogi E, Sui Y, Armenia J, McDonough E et al (2016) Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism. JCI Insight 1(6).
  4. 4.
    Gorris MAJ, Halilovic A, Rabold K, van Duffelen A, Wickramasinghe IN, Verweij D et al (2018) Eight-color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J Immunol. Scholar
  5. 5.
    Rost S, Giltnane J, Bordeaux JM, Hitzman C, Koeppen H, Liu SD (2017) Multiplexed ion beam imaging analysis for quantitation of protein expresssion in cancer tissue sections. Lab Investig 97(8):992–1003PubMedGoogle Scholar
  6. 6.
    Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58PubMedPubMedCentralGoogle Scholar
  7. 7.
    Dixon AR, Bathany C, Tsuei M, White J, Barald KF, Takayama S (2015) Recent developments in multiplexing techniques for immunohistochemistry. Expert Rev Mol Diagn 15(9):1171–1186PubMedPubMedCentralGoogle Scholar
  8. 8.
    Walker RA (2006) Quantification of immunohistochemistry – issues concerning methods, utility and semiquantitative assessment I. Histopathology 49(4):406–410PubMedGoogle Scholar
  9. 9.
    Matkowskyj KA, Schonfeld D, Benya RV (2000) Quantitative immunohistochemistry by measuring cumulative signal strength using commercially available software photoshop and matlab. J Histochem Cytochem 48(2):303–312PubMedGoogle Scholar
  10. 10.
    Rimm DL, Leung SCY, McShane LM, Bai Y, Bane AL, Bartlett JMS et al (2019) An international multicenter study to evaluate reproducibility of automated scoring for assessment of Ki67 in breast cancer. Mod Pathol. Scholar
  11. 11.
    Liu JT, Loewke NO, Mandella MJ, Levenson RM, Crawford JM, Contag CH (2011) Point-of-care pathology with miniature microscopes. Anal Cell Pathol (Amst) 34(3):81–98Google Scholar
  12. 12.
    Wolff RA, Wang-Gillam A, Alvarez H, Tiriac H, Engle D, Hou S et al (2018) Dynamic changes during the treatment of pancreatic cancer. Oncotarget 9(19):14764–14790PubMedPubMedCentralGoogle Scholar
  13. 13.
    Levenson RM, Fornari A, Loda M (2008) Multispectral imaging and pathology: seeing and doing more. Expert Opin Med Diagn 2(9):1067–1081PubMedGoogle Scholar
  14. 14.
    Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48(10):1819–1827PubMedGoogle Scholar
  15. 15.
    Buican TN, Hoffmann GW (1985) Immunofluorescent flow cytometry in N dimensions. The multiplex labeling approach. Cell Biophys 7(2):129–156PubMedGoogle Scholar
  16. 16.
    Buican TN, Purcell A (1983) Many-color' flow microfluorometric analysis by multiplex labelling. Surv Immunol Res 2(2):178–188PubMedGoogle Scholar
  17. 17.
    Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26Google Scholar
  18. 18.
    Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795PubMedPubMedCentralGoogle Scholar
  19. 19.
    Garini Y, Young IT, McNamara G (2006) Spectral imaging: principles and applications. Cytometry A 69(8):735–747Google Scholar
  20. 20.
    Ghaznavi F, Evans A, Madabhushi A, Feldman M (2013) Digital imaging in pathology: whole-slide imaging and beyond. Annu Rev Pathol 8:331–359PubMedGoogle Scholar
  21. 21.
    Farkas DL, Du C, Fisher GW, Lau C, Niu W, Wachman ES et al (1998) Non-invasive image acquisition and advanced processing in optical bioimaging. Comput Med Imaging Graph 22(2):89–102PubMedGoogle Scholar
  22. 22.
    Hahn LD, Hoyt C, Rimm DL, Theoharis C (2013) Spatial spectral imaging as an adjunct to the Bethesda classification of thyroid fine-needle aspiration specimens. Cancer Cytopathol 121(3):162–167PubMedGoogle Scholar
  23. 23.
    Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol 95:245–265PubMedGoogle Scholar
  24. 24.
    Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10(4):41207PubMedGoogle Scholar
  25. 25.
    Weagle G, Paterson PE, Kennedy J, Pottier R (1988) The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin. J Photochem Photobiol B 2(3):313–320PubMedGoogle Scholar
  26. 26.
    Prinsen CF, Klaassen CH, Thunnissen FB (2003) Microarray as a model for quantitative visualization chemistry. Appl Immunohistochem Mol Morphol 11(2):168–173PubMedGoogle Scholar
  27. 27.
    Bobrow MN, Shaughnessy KJ, Litt GJ (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods 137(1):103–112PubMedGoogle Scholar
  28. 28.
    Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125(1–2):279–285PubMedGoogle Scholar
  29. 29.
    Hunyady B, Krempels K, Harta G, Mezey E (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44(12):1353–1362PubMedGoogle Scholar
  30. 30.
    Toth ZE, Mezey E (2007) Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem 55(6):545–554PubMedGoogle Scholar
  31. 31.
    Parra ER, Uraoka N, Jiang M, Cook P, Gibbons D, Forget MA et al (2017) Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci Rep 7(1):13380PubMedPubMedCentralGoogle Scholar
  32. 32.
    Faget L, Hnasko TS (2015) Tyramide signal amplification for immunofluorescent enhancement. Methods Mol Biol 1318:161–172PubMedGoogle Scholar
  33. 33.
    Parra ER, Villalobos P, Mino B, Rodriguez-Canales J (2018) Comparison of different antibody clones for immunohistochemistry detection of programmed cell death ligand 1 (PD-L1) on non-small cell lung carcinoma. Appl Immunohistochem Mol Morphol 26(2):83–93PubMedGoogle Scholar
  34. 34.
    Parra ER (2018) Novel technology to assess programmed death-ligand 1 expression by multiplex immunofluorescence and image analysis. Appl Immunohistochem Mol Morphol 26(2):e22–ee4PubMedGoogle Scholar
  35. 35.
    Buisseret L, Pommey S, Allard B, Garaud S, Bergeron M, Cousineau I et al (2018) Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Ann Oncol 29(4):1056–1062PubMedGoogle Scholar
  36. 36.
    Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC, Gjini E et al (2017) Topological analysis reveals a PD-L1-associated microenvironmental niche for reed-Sternberg cells in Hodgkin lymphoma. Blood 130(22):2420–2430PubMedPubMedCentralGoogle Scholar
  37. 37.
    Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A et al (2018) CD103(+) tumor-resident CD8(+) T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res 24(13):3036–3045PubMedGoogle Scholar
  38. 38.
    Fang M, Peng CW, Pang DW, Li Y (2012) Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med 9(3):151–163PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ju X, Shen R, Huang P, Zhai J, Qian X, Wang Q et al (2017) Predictive relevance of PD-L1 expression with pre-existing TILs in gastric cancer. Oncotarget 8(59):99372–99381PubMedPubMedCentralGoogle Scholar
  40. 40.
    Savic Prince S, Bubendorf L (2019) Predictive potential and need for standardization of PD-L1 immunohistochemistry. Virchows Arch. Scholar
  41. 41.
    Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301PubMedPubMedCentralGoogle Scholar
  42. 42.
    Gettinger SN, Choi J, Mani N, Sanmamed MF, Datar I, Sowell R et al (2018) A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 9(1):3196PubMedPubMedCentralGoogle Scholar
  43. 43.
    Barua S, Solis L, Parra ER, Uraoka N, Jiang M, Wang H et al (2018) A functional spatial analysis platform for discovery of immunological interactions predictive of low-grade to high-grade transition of pancreatic Intraductal papillary mucinous neoplasms. Cancer Inform 17:1176935118782880PubMedPubMedCentralGoogle Scholar
  44. 44.
    Schalper KA, Brown J, Carvajal-Hausdorf D, McLaughlin J, Velcheti V, Syrigos KN et al (2015) Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst 107(3).
  45. 45.
    Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M et al (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig 94(1):107–116PubMedGoogle Scholar
  46. 46.
    Parra ER, Villalobos P, Behrens C, Jiang M, Pataer A, Swisher SG et al (2018) Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 6(1):48PubMedPubMedCentralGoogle Scholar
  47. 47.
    Toki MI, Mani N, Smithy JW, Liu Y, Altan M, Wasserman B et al (2018) Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations. J Thorac Oncol 13(12):1884–1896PubMedGoogle Scholar
  48. 48.
    Barua S, Fang P, Sharma A, Fujimoto J, Wistuba I, Rao AUK et al (2018) Spatial interaction of tumor cells and regulatory T cells correlates with survival in non-small cell lung cancer. Lung Cancer 117:73–79PubMedPubMedCentralGoogle Scholar
  49. 49.
    Parra ER (2018) Novel platforms of multiplexed immunofluorescence for study of paraffin tumor tissues. J Cancer Treat Diagn 2(1):43–53Google Scholar
  50. 50.
    Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Bockelmann R, Malykh Y et al (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24(10):1270–1278PubMedGoogle Scholar
  51. 51.
    Friedenberger M, Bode M, Krusche A, Schubert W (2007) Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures. Nat Protoc 2(9):2285–2294PubMedGoogle Scholar
  52. 52.
    Herman B, Krishnan RV, Centonze VE (2004) Microscopic analysis of fluorescence resonance energy transfer (FRET). Methods Mol Biol 261:351–370PubMedGoogle Scholar
  53. 53.
    Ostalecki C, Konrad A, Thurau E, Schuler G, Croner RS, Pommer AJ et al (2013) Combined multi-gene analysis at the RNA and protein levels in single FFPE tissue sections. Exp Mol Pathol 95(1):1–6PubMedGoogle Scholar
  54. 54.
    Ostalecki C, Wittki S, Lee JH, Geist MM, Tibroni N, Harrer T et al (2016) HIV Nef- and Notch1-dependent endocytosis of ADAM17 induces vesicular TNF secretion in chronic HIV infection. EBioMedicine 13:294–304PubMedPubMedCentralGoogle Scholar
  55. 55.
    Philipsen L, Engels T, Schilling K, Gurbiel S, Fischer KD, Tedford K et al (2013) Multimolecular analysis of stable immunological synapses reveals sustained recruitment and sequential assembly of signaling clusters. Mol Cell Proteomics 12(9):2551–2567PubMedPubMedCentralGoogle Scholar
  56. 56.
    Berndt U, Philipsen L, Bartsch S, Hu Y, Rocken C, Bertram W et al (2010) Comparative multi-epitope-ligand-cartography reveals essential immunological alterations in Barrett's metaplasia and esophageal adenocarcinoma. Mol Cancer 9:177PubMedPubMedCentralGoogle Scholar
  57. 57.
    Berndt U, Philipsen L, Bartsch S, Wiedenmann B, Baumgart DC, Hammerle M et al (2008) Systematic high-content proteomic analysis reveals substantial immunologic changes in colorectal cancer. Cancer Res 68(3):880–888PubMedGoogle Scholar
  58. 58.
    Glass G, Papin JA, Mandell JW (2009) SIMPLE: a sequential immunoperoxidase labeling and erasing method. J Histochem Cytochem 57(10):899–905PubMedPubMedCentralGoogle Scholar
  59. 59.
    Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH et al (2017) Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep 19(1):203–217PubMedPubMedCentralGoogle Scholar
  60. 60.
    Hollman-Hewgley D, Lazare M, Bordwell A, Zebadua E, Tripathi P, Ross AS et al (2014) A single slide multiplex assay for the evaluation of classical Hodgkin lymphoma. Am J Surg Pathol 38(9):1193–1202PubMedGoogle Scholar
  61. 61.
    Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A et al (2013) Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Natl Acad Sci U S A 110(29):11982–11987PubMedPubMedCentralGoogle Scholar
  62. 62.
    Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vasquez G, Nolan G (2018) Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Alejandro Francisco-Cruz
    • 1
    • 2
  • Edwin Roger Parra
    • 1
    • 2
  • Michael T. Tetzlaff
    • 1
    • 2
  • Ignacio I. Wistuba
    • 1
    • 2
    Email author
  1. 1.Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations