Advertisement

Methods to Detect Immunogenic Cell Death In Vivo

  • Takahiro Yamazaki
  • Aitziber Buqué
  • Marissa Rybstein
  • Jonathan Chen
  • Ai Sato
  • Lorenzo GalluzziEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

In response to selected stressors, cancer cells can undergo a form of regulated cell death that—in immunocompetent syngeneic hosts—is capable of eliciting an adaptive immune response specific for dead cell-associated antigens. Thus, such variant of regulated cell death manifests with robust antigenicity and adjuvanticity. As compared to their normal counterparts, malignant cells are highly antigenic per se, implying that they express a variety of antigens that are not covered by central tolerance. However, the precise modality through which cancer cells die in response to stress has a major influence on adjuvanticity. Moreover, the adjuvanticity threshold to productively drive anticancer immune responses is considerably lower in tumor-naïve hosts as compared to their tumor-bearing counterparts, largely reflecting the establishment of peripheral tolerance to malignant lesions in the latter (but not in the former). So far, no cellular biomarker or combination thereof has been found to reliably predict the ability of cancer cell death to initiate antitumor immunity. Thus, although some surrogate biomarkers of adjuvanticity can be used for screening purposes, the occurrence of bona fide immunogenic cell death (ICD) can only be ascertained in vivo. Here, we describe two methods that can be harnessed to straightforwardly determine the immunogenicity of mouse cancer cells succumbing to stress in both tumor-naïve and tumor-bearing hosts.

Key words

Abscopal effect Anthracycline-based chemotherapy CD8+ cytotoxic T lymphocytes Damage-associated molecular patterns Dendritic cells Radiation therapy Vaccination 

Notes

Acknowledgments

The authors are supported by a Breakthrough Level 2 grant from the US Department of Defense (DoD), Breast Cancer Research Program (BRCP) (#BC180476P1), by a startup grant from the Dept. of Radiation Oncology at Weill Cornell Medicine (New York, USA), by industrial collaborations with Lytix (Oslo, Norway) and Phosplatin (New York, USA), and by donations from Phosplatin (New York, USA), the Luke Heller TECPR2 Foundation (Boston, USA), and Sotio a.s. (Prague, Czech Republic).

Author Disclosure: L.G. provides remunerated consulting to OmniSEQ (Buffalo, NY, USA), Astra Zeneca (Gaithersburg, MD, USA), VL47 (New York, NY, USA), and the Luke Heller TECPR2 Foundation (Boston, MA, USA), and he is member of the Scientific Advisory Committee of OmniSEQ (Buffalo, NY, USA). The other authors have no conflicts of interest to disclose.

References

  1. 1.
    Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758PubMedPubMedCentralGoogle Scholar
  2. 2.
    Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16(6):329–344PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284PubMedGoogle Scholar
  4. 4.
    Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111PubMedGoogle Scholar
  5. 5.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72PubMedGoogle Scholar
  6. 6.
    Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875PubMedGoogle Scholar
  7. 7.
    Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36(13):1811–1836PubMedPubMedCentralGoogle Scholar
  8. 8.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74Google Scholar
  9. 9.
    Schumacher TN, Hacohen N (2016) Neoantigens encoded in the cancer genome. Curr Opin Immunol 41:98–103PubMedGoogle Scholar
  10. 10.
    Gubin MM, Artyomov MN, Mardis ER, Schreiber RD (2015) Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125(9):3413–3421PubMedPubMedCentralGoogle Scholar
  11. 11.
    Yui MA, Rothenberg EV (2014) Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 14(8):529–545PubMedPubMedCentralGoogle Scholar
  12. 12.
    Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the thymus. Trends Immunol 38(11):805–816PubMedGoogle Scholar
  13. 13.
    Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59(3):583–594PubMedGoogle Scholar
  14. 14.
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541PubMedPubMedCentralGoogle Scholar
  15. 15.
    Galluzzi L, Kepp O, Chan FK, Kroemer G (2017) Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol 12:103–130PubMedGoogle Scholar
  16. 16.
    Vitale I, Galluzzi L, Senovilla L, Criollo A, Jemaa M, Castedo M et al (2011) Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ 18(9):1403–1413PubMedGoogle Scholar
  17. 17.
    Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392PubMedGoogle Scholar
  18. 18.
    Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724PubMedPubMedCentralGoogle Scholar
  19. 19.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558PubMedPubMedCentralGoogle Scholar
  20. 20.
    Pon JR, Marra MA (2015) Driver and passenger mutations in cancer. Annu Rev Pathol 10:25–50PubMedGoogle Scholar
  21. 21.
    Garg AD, Martin S, Golab J, Agostinis P (2014) Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ 21(1):26–38PubMedGoogle Scholar
  22. 22.
    Garg AD, Agostinis P (2017) Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 280(1):126–148PubMedGoogle Scholar
  23. 23.
    Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM et al (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588PubMedPubMedCentralGoogle Scholar
  24. 24.
    Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17(4):262–275PubMedGoogle Scholar
  25. 25.
    Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14(11):759–767PubMedGoogle Scholar
  26. 26.
    Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837PubMedPubMedCentralGoogle Scholar
  27. 27.
    West AP, Shadel GS (2017) Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 17(6):363–375PubMedGoogle Scholar
  28. 28.
    Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420PubMedGoogle Scholar
  29. 29.
    Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35–50PubMedGoogle Scholar
  30. 30.
    Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558PubMedGoogle Scholar
  31. 31.
    Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734PubMedGoogle Scholar
  32. 32.
    Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28(6):690–714PubMedGoogle Scholar
  33. 33.
    Vijayan D, Young A, Teng MWL, Smyth MJ (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17(12):709–724Google Scholar
  34. 34.
    Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3(9):e955691PubMedPubMedCentralGoogle Scholar
  35. 35.
    Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P (2013) Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 24(4):319–333PubMedGoogle Scholar
  36. 36.
    Janicka M, Gubernator J (2017) Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy. Expert Opin Drug Deliv 14(9):1059–1075PubMedGoogle Scholar
  37. 37.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787PubMedGoogle Scholar
  38. 38.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to Cancer immunotherapy. Cell 168(4):707–723PubMedPubMedCentralGoogle Scholar
  39. 39.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(4):812–830.e814PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lu L, Barbi J, Pan F (2017) The regulation of immune tolerance by FOXP3. Nat Rev Immunol 17(11):703–717PubMedPubMedCentralGoogle Scholar
  41. 41.
    Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618PubMedPubMedCentralGoogle Scholar
  42. 42.
    Yamazaki T, Galluzzi L (2017) TREX1 cuts down on cancer immunogenicity. Trends Cell Biol 27(8):543–545PubMedGoogle Scholar
  43. 43.
    Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870PubMedGoogle Scholar
  44. 44.
    Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC (2018) Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 18(5):313–322PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S (2018) Immunological mechanisms responsible for radiation-induced Abscopal effect. Trends Immunol 39(8):644–655PubMedPubMedCentralGoogle Scholar
  46. 46.
    Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803PubMedGoogle Scholar
  47. 47.
    Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372PubMedPubMedCentralGoogle Scholar
  48. 48.
    Weichselbaum RR, Liang H, Deng L, Fu YX (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14(6):365–379PubMedGoogle Scholar
  49. 49.
    Johnstone CD, Lindsay P, Graves EE, Wong E, Perez JR, Poirier Y et al (2017) Multi-institutional MicroCT image comparison of image-guided small animal irradiators. Phys Med Biol 62(14):5760–5776PubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang Z, Wodzak M, Belzile O, Zhou H, Sishc B, Yan H et al (2016) Effective rat lung tumor model for stereotactic body radiation therapy. Radiat Res 185(6):616–622PubMedPubMedCentralGoogle Scholar
  51. 51.
    Yamano T, Kubo S, Fukumoto M, Yano A, Mawatari-Furukawa Y, Okamura H et al (2016) Whole cell vaccination using immunogenic cell death by an oncolytic adenovirus is effective against a colorectal cancer model. Mol Ther Oncolytics 3:16031PubMedPubMedCentralGoogle Scholar
  52. 52.
    Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12):1691–1701PubMedPubMedCentralGoogle Scholar
  53. 53.
    Sukkurwala AQ, Adjemian S, Senovilla L, Michaud M, Spaggiari S, Vacchelli E et al (2014) Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. Oncoimmunology 3:e28473PubMedPubMedCentralGoogle Scholar
  54. 54.
    Schrand B, Verma B, Levay A, Patel S, Castro I, Benaduce AP et al (2017) Radiation-induced enhancement of antitumor T-cell immunity by VEGF-targeted 4-1BB Costimulation. Cancer Res 77(6):1310–1321PubMedGoogle Scholar
  55. 55.
    Rodriguez-Ruiz ME, Rodriguez I, Garasa S, Barbes B, Solorzano JL, Perez-Gracia JL et al (2016) Abscopal effects of radiotherapy are enhanced by combined immunostimulatory mAbs and are dependent on CD8 T cells and crosspriming. Cancer Res 76(20):5994–6005PubMedGoogle Scholar
  56. 56.
    Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J et al (2018) Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta. Sci Transl Med 10(424):eaan5488PubMedGoogle Scholar
  57. 57.
    Rodriguez-Ruiz ME, Rodriguez I, Barbes B, Mayorga L, Sanchez-Paulete AR, Ponz-Sarvise M et al (2017) Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy 16(6):1246–1251PubMedGoogle Scholar
  58. 58.
    Lenk H, Muller U, Tanneberger S (1987) Mitoxantrone: mechanism of action, antitumor activity, pharmacokinetics, efficacy in the treatment of solid tumors and lymphomas, and toxicity. Anticancer Res 7(6):1257–1264PubMedGoogle Scholar
  59. 59.
    Vollmer T, Stewart T, Baxter N (2010) Mitoxantrone and cytotoxic drugs’ mechanisms of action. Neurology 74(Suppl 1):S41–S46PubMedGoogle Scholar
  60. 60.
    Fox EJ (2004) Mechanism of action of mitoxantrone. Neurology 63(12 Suppl 6):S15–S18PubMedGoogle Scholar
  61. 61.
    Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV et al (2010) Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 376(9757):2009–2017PubMedPubMedCentralGoogle Scholar
  62. 62.
    Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351(15):1513–1520PubMedGoogle Scholar
  63. 63.
    Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A et al (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362(14):1273–1281PubMedGoogle Scholar
  64. 64.
    Perilongo G, Maibach R, Shafford E, Brugieres L, Brock P, Morland B et al (2009) Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N Engl J Med 361(17):1662–1670PubMedGoogle Scholar
  65. 65.
    Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V et al (2007) Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 357(17):1705–1715PubMedGoogle Scholar
  66. 66.
    Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C et al (2005) Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med 352(25):2589–2597PubMedGoogle Scholar
  67. 67.
    Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J et al (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350(4):351–360PubMedGoogle Scholar
  68. 68.
    Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A et al (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257PubMedPubMedCentralGoogle Scholar
  69. 69.
    Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–1883PubMedGoogle Scholar
  70. 70.
    Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279PubMedGoogle Scholar
  71. 71.
    Blazar BR, Taylor PA, Linsley PS, Vallera DA (1994) In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 83(12):3815–3825PubMedGoogle Scholar
  72. 72.
    Torsvik A, Stieber D, Enger PO, Golebiewska A, Molven A, Svendsen A et al (2014) U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med 3(4):812–824PubMedPubMedCentralGoogle Scholar
  73. 73.
    Capes-Davis A, Reid YA, Kline MC, Storts DR, Strauss E, Dirks WG et al (2013) Match criteria for human cell line authentication: where do we draw the line? Int J Cancer 132(11):2510–2519PubMedGoogle Scholar
  74. 74.
    Terenzi A, Pirker C, Keppler BK, Berger W (2016) Anticancer metal drugs and immunogenic cell death. J Inorg Biochem 165:71–79PubMedGoogle Scholar
  75. 75.
    Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A et al (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 70(5):1793–1803PubMedGoogle Scholar
  76. 76.
    Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S et al (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30(10):1147–1158PubMedGoogle Scholar
  77. 77.
    Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29(4):482–491PubMedGoogle Scholar
  78. 78.
    Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P et al (2017) Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 6(12):e1386829PubMedPubMedCentralGoogle Scholar
  79. 79.
    Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R et al (2015) Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 6:187PubMedPubMedCentralGoogle Scholar
  80. 80.
    Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577PubMedGoogle Scholar
  81. 81.
    Bezu L, Sauvat A, Humeau J, Gomes-da-Silva LC, Iribarren K, Forveille S et al (2018) eIF2alpha phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ 25(8):1375–1393PubMedPubMedCentralGoogle Scholar
  82. 82.
    Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F et al (2015) Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350(6263):972–978PubMedGoogle Scholar
  83. 83.
    Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20(11):1301–1309PubMedGoogle Scholar
  84. 84.
    Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518PubMedPubMedCentralGoogle Scholar
  85. 85.
    Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S et al (2016) Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 5(9):e1214790PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wu J, Waxman DJ (2018) Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett 419:210–221PubMedPubMedCentralGoogle Scholar
  87. 87.
    Wu J, Waxman DJ (2015) Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8(+) T-cell responses and immune memory. Oncoimmunology 4(4):e1005521PubMedPubMedCentralGoogle Scholar
  88. 88.
    Jiang L, Paone S, Caruso S, Atkin-Smith GK, Phan TK, Hulett MD et al (2017) Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci Rep 7(1):14444PubMedPubMedCentralGoogle Scholar
  89. 89.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61PubMedGoogle Scholar
  90. 90.
    Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C et al (2015) Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520(7545):104–108PubMedPubMedCentralGoogle Scholar
  91. 91.
    Ginhoux F, Ng LG, Merad M (2012) Understanding the murine cutaneous dendritic cell network to improve intradermal vaccination strategies. Curr Top Microbiol Immunol 351:1–24PubMedGoogle Scholar
  92. 92.
    Karreman MA, Ruthensteiner B, Mercier L, Schieber NL, Solecki G, Winkler F et al (2017) Find your way with X-ray: using microCT to correlate in vivo imaging with 3D electron microscopy. Methods Cell Biol 140:277–301PubMedGoogle Scholar
  93. 93.
    Winkelmann CT, Figueroa SD, Sieckman GL, Rold TL, Hoffman TJ (2012) Non-invasive microCT imaging characterization and in vivo targeting of BB2 receptor expression of a PC-3 bone metastasis model. Mol Imaging Biol 14(6):667–675PubMedGoogle Scholar
  94. 94.
    Galluzzi L, Vanpouille-Box C, Bakhoum SF, Demaria S (2018) SnapShot: CGAS-STING Signaling. Cell 173(1):276–276.e1PubMedGoogle Scholar
  95. 95.
    Vanpouille-Box C, Formenti SC, Demaria S (2017) TREX1 dictates the immune fate of irradiated cancer cells. Oncoimmunology 6(9):e1339857PubMedPubMedCentralGoogle Scholar
  96. 96.
    Hoos A (2016) Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15(4):235–247PubMedGoogle Scholar
  97. 97.
    Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355PubMedGoogle Scholar
  98. 98.
    Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75(11):2232–2242PubMedPubMedCentralGoogle Scholar
  99. 99.
    Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18(3):153–167Google Scholar
  100. 100.
    Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L (2018) Cytosolic DNA sensing in organismal tumor control. Cancer Cell 34(3):361–378PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Takahiro Yamazaki
    • 1
  • Aitziber Buqué
    • 1
  • Marissa Rybstein
    • 1
  • Jonathan Chen
    • 1
  • Ai Sato
    • 1
  • Lorenzo Galluzzi
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Sandra and Edward Meyer Cancer CenterNew YorkUSA
  3. 3.Université Paris Descartes/Paris VParisFrance

Personalised recommendations