Advertisement

Functional Genome Profiling to Understand Cancer Immune Responsiveness

  • Ena Wang
  • Davide Bedognetti
  • Francesco M. Marincola
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

It has been almost two decades since we first proposed the use of minimally invasive serial biopsies to dissect the biology underlining cancer immune responsiveness (CIR) by looking for predictors of response, understanding mechanisms of action (MOA) of therapeutics and documenting strategies adopted by tumor cells to escape immune recognition. This approach led to the first description in 2002 of predictors of CIR, the characterization of the pharmacodynamics of several immune therapeutics, and the geneses of immune escape under immunological pressure prompted by successful treatment. The presumption was straightforward; study CIR where it occurs: the target organ. Since then, a large number of studies corroborated these early observations adding sophistication and accuracy to the investigations. Here, we summarize the history of functional genomic profiling as a discovery and validation tool for immune oncology (IO) and new insights that could be derived by single novel technologies.

Key words

Genomic profiling Immune oncology (IO) Cancer immune responsiveness (CIR) Mechanisms of action (MOA) 

Abbreviations

ACT

Adoptive cellular therapy

CCR

C-C motif chemokine receptor

CIR

Cancer immune responsiveness

DAMP

Damage associated molecular pattern

HMB1

High-mobility group box protein 1

ICD

Immunogenic cell death

ICR

Immunologic constant of rejection

ICT

Immune-checkpoint inhibitor therapy

IFN

Interferon

IO

Immune oncology

MHC

Major histocompatibility complex

MOA

Mechanism of action

TCGA

The Cancer Genome Atlas

TIL

Tumor-infiltrating lymphocytes

TIS

Tumor inflammation signature

TME

Tumor microenvironment

References

  1. 1.
    Wang E, Marincola FM (2000) A natural history of melanoma: serial gene expression analysis. Immunol Today 21(12):619–623PubMedGoogle Scholar
  2. 2.
    Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM (2000) High-fidelity mRNA amplification for gene profiling. Nat Biotechnol 18(4):457–459PubMedGoogle Scholar
  3. 3.
    Wang E, Tomei S, Marincola FM (2012) Reflections upon human cancer immune responsiveness to T cell-based therapy. Cancer Immunol Immunother 61(6):761–770PubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang E, Miller LD, Ohnmacht GA, Mocellin S, Perez-Diez A, Petersen D et al (2002) Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 62(13):3581–3586PubMedPubMedCentralGoogle Scholar
  5. 5.
    Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr et al (2011) Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 17(23):7440–7450PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795PubMedGoogle Scholar
  8. 8.
    Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P et al (2013) Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol 14(4):R34PubMedPubMedCentralGoogle Scholar
  9. 9.
    Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262PubMedGoogle Scholar
  10. 10.
    Panelli MC, Stashower ME, Slade HB, Smith K, Norwood C, Abati A et al (2007) Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 8(1):R8PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang E, Worschech A, Marincola FM (2008) The immunologic constant of rejection. Trends Immunol 29(6):256–262PubMedPubMedCentralGoogle Scholar
  12. 12.
    Spivey TL, Uccellini L, Ascierto ML, Zoppoli G, De Giorgi V, Delogu LG et al (2011) Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 9:174PubMedPubMedCentralGoogle Scholar
  13. 13.
    Franzen B, Alexeyenko A, Kamali-Moghaddam M, Hatschek T, Kanter L, Ramqvist T et al (2018) Protein profiling of fine needle aspirates reveals subtype-associated immune signatures and involvement of chemokines in breast cancer. Mol OncolGoogle Scholar
  14. 14.
    Ohnmacht GA, Wang E, Mocellin S, Abati A, Filie A, Fetsch P et al (2001) Short-term kinetics of tumor antigen expression in response to vaccination. J Immunol 167(3):1809–1820PubMedPubMedCentralGoogle Scholar
  15. 15.
    Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L et al (2018) Evolution of metastases in space and time under immune selection. Cell 175(3):751–65 e16PubMedGoogle Scholar
  16. 16.
    Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S et al (2009) Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics 10:301PubMedPubMedCentralGoogle Scholar
  17. 17.
    Worschech A, Kmieciak M, Knutson KL, Bear HD, Szalay AA, Wang E et al (2008) Signatures associated with rejection or recurrence in HER-2/neu-positive mammary tumors. Cancer Res 68(7):2436–2446PubMedPubMedCentralGoogle Scholar
  18. 18.
    Turan T, Kannan D, Patel M, Matthew Barnes J, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 6(1):50PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lu R, Turan T, Samayoa J, Marincola FM (2017) Cancer immune resistance: can theories converge? Emerg Top Life Sci 1(5):411–419Google Scholar
  20. 20.
    Orecchioni M, Bedognetti D, Newman L, Fuoco C, Spada F, Hendrickx W et al (2017) Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat Commun 8(1):1109PubMedPubMedCentralGoogle Scholar
  21. 21.
    Miller LD, Chou JA, Black MA, Print C, Chifman J, Alistar A et al (2016) Immunogenic subtypes of breast cancer delineated by gene classifiers of immune responsiveness. Cancer Immunol Res 4(7):600–610PubMedPubMedCentralGoogle Scholar
  22. 22.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964Google Scholar
  23. 23.
    Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C et al (2018) International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139PubMedGoogle Scholar
  24. 24.
    Bertucci F, Finetti P, Simeone I, Hendrickx W, Wang E, Marincola FM et al (2018) The immunologic constant of rejection classification refines the prognostic value of conventional prognostic signatures in breast cancer. Br J Cancer 119(11):1383–1391PubMedPubMedCentralGoogle Scholar
  25. 25.
    Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26Google Scholar
  26. 26.
    Wang E, Uccellini L, Marincola FM (2012) A genetic inference on cancer immune responsiveness. Oncoimmunology. 1(4):520–525PubMedPubMedCentralGoogle Scholar
  27. 27.
    Soldati L, Di Renzo L, Jirillo E, Ascierto PA, Marincola FM, De Lorenzo A (2018) The influence of diet on anti-cancer immune responsiveness. J Transl Med 16(1):75PubMedPubMedCentralGoogle Scholar
  28. 28.
    Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970PubMedPubMedCentralGoogle Scholar
  29. 29.
    Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL et al (2017) Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer 81:116–129PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6(1):8PubMedPubMedCentralGoogle Scholar
  31. 31.
    Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I et al (2018) Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer 6(1):63PubMedPubMedCentralGoogle Scholar
  32. 32.
    Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501PubMedPubMedCentralGoogle Scholar
  33. 33.
    Abd Al Samid M, Chaudhary B, Khaled YS, Ammori BJ, Elkord E (2016) Combining FoxP3 and helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients. Oncotarget 7(12):14083–14094PubMedPubMedCentralGoogle Scholar
  34. 34.
    Alinejad V, Dolati S, Motallebnezhad M, Yousefi M (2017) The role of IL17B-IL17RB signaling pathway in breast cancer. Biomed Pharmacother 88:795–803PubMedPubMedCentralGoogle Scholar
  35. 35.
    Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6PubMedPubMedCentralGoogle Scholar
  36. 36.
    Mondanelli G, Ugel S, Grohmann U, Bronte V (2017) The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Curr Opin Pharmacol 35:30–39PubMedPubMedCentralGoogle Scholar
  37. 37.
    Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111PubMedPubMedCentralGoogle Scholar
  38. 38.
    Crittenden MR, Baird J, Friedman D, Savage T, Uhde L, Alice A et al (2016) Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy. Oncotarget 7(48):78653–78666PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596PubMedPubMedCentralGoogle Scholar
  41. 41.
    Salerno EP, Bedognetti D, Mauldin IS, Deacon DH, Shea SM, Pinczewski J et al (2016) Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncoimmunology. 5(12):e1240857PubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10Google Scholar
  43. 43.
    Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B, Kaiser A et al (2018) Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132(8):804–814PubMedPubMedCentralGoogle Scholar
  44. 44.
    Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD et al (2017) Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med 14(5):e1002309PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S et al (2017) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 168(3):542Google Scholar
  46. 46.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581PubMedPubMedCentralGoogle Scholar
  47. 47.
    Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74PubMedPubMedCentralGoogle Scholar
  48. 48.
    Hendrickx W, Simeone I, Anjum S, Mokrab Y, Bertucci F, Finetti P et al (2017) Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology. 6(2):e1253654PubMedPubMedCentralGoogle Scholar
  49. 49.
    Lin VTG, Pruitt HC, Samant RS, Shevde LA (2017) Developing cures: targeting ontogenesis in cancer. Trends Cancer 3(2):126–136PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wellenstein MD, de Visser KE (2018) Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48(3):399–416PubMedGoogle Scholar
  51. 51.
    Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371(9614):771–783PubMedPubMedCentralGoogle Scholar
  52. 52.
    Migali C, Milano M, Trapani D, Criscitiello C, Esposito A, Locatelli M et al (2016) Strategies to modulate the immune system in breast cancer: checkpoint inhibitors and beyond. Ther Adv Med Oncol 8(5):360–374PubMedPubMedCentralGoogle Scholar
  53. 53.
    Labi V, Erlacher M (2015) How cell death shapes cancer. Cell Death Dis 6:e1675PubMedPubMedCentralGoogle Scholar
  54. 54.
    Palmieri G, Colombino M, Cossu A, Marchetti A, Botti G, Ascierto PA (2017) Genetic instability and increased mutational load: which diagnostic tool best direct patients with cancer to immunotherapy? J Transl Med 15(1):17PubMedPubMedCentralGoogle Scholar
  55. 55.
    Fuchs EJ, Matzinger P (1996) Is cancer dangerous to the immune system? Semin Immunol 8(5):271–280Google Scholar
  56. 56.
    Lam TK, Shao S, Zhao Y, Marincola F, Pesatori A, Bertazzi PA et al (2012) Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol Biomark Prev 21(12):2176–2184Google Scholar
  57. 57.
    Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6(8):827–837PubMedPubMedCentralGoogle Scholar
  58. 58.
    Gajewski TF, Louahed J, Brichard VG (2010) Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J 16(4):399–403PubMedGoogle Scholar
  59. 59.
    Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175(4):998–1013 e20PubMedPubMedCentralGoogle Scholar
  60. 60.
    Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F et al (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24(7):986–993PubMedGoogle Scholar
  61. 61.
    Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306PubMedPubMedCentralGoogle Scholar
  62. 62.
    Wang C, Sanders CM, Yang Q, Schroeder HW Jr, Wang E, Babrzadeh F et al (2010) High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc Natl Acad Sci U S A 107(4):1518–1523PubMedPubMedCentralGoogle Scholar
  63. 63.
    Johnson DB, Bordeaux J, Kim JY, Vaupel C, Rimm DL, Ho TH et al (2018) Quantitative spatial profiling of PD-1/PD-L1 interaction and HLA-DR/IDO-1 predicts improved outcomes of anti-PD-1 therapies in metastatic melanoma. Clin Cancer ResGoogle Scholar
  64. 64.
    Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235Google Scholar
  65. 65.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44PubMedPubMedCentralGoogle Scholar
  66. 66.
    Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6(2):202–216PubMedPubMedCentralGoogle Scholar
  67. 67.
    Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3(12):1355–1363PubMedGoogle Scholar
  68. 68.
    Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J et al (2015) Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 21(17):4014–4021PubMedGoogle Scholar
  69. 69.
    Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM et al (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70(13):5213–5219Google Scholar
  70. 70.
    Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR et al (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19(5):1225–1231PubMedPubMedCentralGoogle Scholar
  71. 71.
    Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P et al (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22(6):1499–1509PubMedPubMedCentralGoogle Scholar
  72. 72.
    Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B et al (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5):974–986PubMedPubMedCentralGoogle Scholar
  73. 73.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W et al (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577):249–253PubMedPubMedCentralGoogle Scholar
  74. 74.
    Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J et al (2017) The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep 20(4):854–867PubMedGoogle Scholar
  75. 75.
    Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP et al (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8(1):1136PubMedPubMedCentralGoogle Scholar
  76. 76.
    Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R et al (2017) Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7(12):1420–1435PubMedPubMedCentralGoogle Scholar
  77. 77.
    Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q et al (2016) Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167(2):397–404.e9PubMedPubMedCentralGoogle Scholar
  78. 78.
    Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A et al (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201PubMedPubMedCentralGoogle Scholar
  79. 79.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61PubMedPubMedCentralGoogle Scholar
  80. 80.
    McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA et al (2017) Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171(6):1259–71.e11PubMedPubMedCentralGoogle Scholar
  81. 81.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829PubMedPubMedCentralGoogle Scholar
  82. 82.
    Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 110(50):20212–20217PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R et al (2013) Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 4:e966PubMedPubMedCentralGoogle Scholar
  84. 84.
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541PubMedPubMedCentralGoogle Scholar
  85. 85.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61PubMedPubMedCentralGoogle Scholar
  86. 86.
    Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590PubMedPubMedCentralGoogle Scholar
  87. 87.
    Scurr M, Pembroke T, Bloom A, Roberts D, Thomson A, Smart K et al (2017) Low-dose cyclophosphamide induces antitumor T-cell responses, which associate with survival in metastatic colorectal cancer. Clin Cancer Res 23(22):6771–6780PubMedPubMedCentralGoogle Scholar
  88. 88.
    John-Aryankalayil M, Palayoor ST, Cerna D, Simone CB 2nd, Falduto MT, Magnuson SR et al (2010) Fractionated radiation therapy can induce a molecular profile for therapeutic targeting. Radiat Res 174(4):446–458PubMedGoogle Scholar
  89. 89.
    Apetoh L, Smyth MJ, Drake CG, Abastado JP, Apte RN, Ayyoub M et al (2015) Consensus nomenclature for CD8(+) T cell phenotypes in cancer. Oncoimmunology 4(4):e998538PubMedPubMedCentralGoogle Scholar
  90. 90.
    Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2:153PubMedPubMedCentralGoogle Scholar
  91. 91.
    Bommareddy PK, Shettigar M, Kaufman HL (2018) Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 18(8):498–513PubMedGoogle Scholar
  92. 92.
    Baginska J, Viry E, Berchem G, Poli A, Noman MZ, van Moer K et al (2013) Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci U S A 110(43):17450–17455PubMedPubMedCentralGoogle Scholar
  93. 93.
    Viry E, Noman MZ, Arakelian T, Lequeux A, Chouaib S, Berchem G et al (2016) Hijacker of the antitumor immune response: autophagy is showing its worst facet. Front Oncol 6:246PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 3(9):e955691PubMedPubMedCentralGoogle Scholar
  95. 95.
    Feng JF, Chen S, Yang X (2017) Systemic immune-inflammation index (SII) is a useful prognostic indicator for patients with squamous cell carcinoma of the esophagus. Medicine 96(4):e5886PubMedPubMedCentralGoogle Scholar
  96. 96.
    Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Thurin M et al (2008) A systematic approach to biomarker discovery; preamble to “the iSBTc-FDA taskforce on immunotherapy biomarkers”. J Transl Med 6:81PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Ena Wang
    • 1
  • Davide Bedognetti
    • 2
  • Francesco M. Marincola
    • 3
  1. 1.Allogene TherapeuticsSouth San FranciscoUSA
  2. 2.Sidra MedicineDohaQatar
  3. 3.Refuge BiotechnologiesMenlo ParkUSA

Personalised recommendations