Advertisement

Histone Modifications as Biomarkers for Immunotherapy

  • Erin M. Taylor
  • Brian Koss
  • Lauren E. Davis
  • Alan J. TackettEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

Recent advances in immunotherapy have revolutionized the treatment of certain cancers. Some patients show a durable response to these immunotherapies, while others show little benefit or develop resistance. Identification of biomarkers to predict responsiveness will be helpful for informing treatment strategies; and would furthermore lead to the identification of molecular pathways dysregulated in nonresponding patients that could be targeted for therapeutic development. Pathways of epigenetic modification, such as histone posttranslational modifications (PTMs), have been shown to be dysregulated in certain cancer and immune cells. Histones are abundant cellular proteins readily assayed with high-throughput technologies, making them attractive targets as biomarkers. We explore promising advancements for using histone PTMs as immunotherapy responsiveness biomarkers in both cancer and immune cells, and provide a methodological workflow for assaying histone PTMs in relevant samples.

Key words

Epigenetics Histone Posttranslational modification Biomarker Immunotherapy 

Notes

Acknowledgments

A.J.T. acknowledges funding from the National Institutes of Health (P20GM121293).

References

  1. 1.
    Dulev S, Tkach J, Lin S, Batada NN (2014) SET8 methyltransferase activity during the DNA double-strand break response is required for recruitment of 53BP1. EMBO Rep 15:1163–1174. [PMID:25252681]PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lukas J, Lukas C, Bartek J (2011) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13:1161–1169. [PMID:21968989]PubMedGoogle Scholar
  3. 3.
    Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, Julien E (2010) The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 12:1086–1093. [PMID:20953199]PubMedGoogle Scholar
  4. 4.
    Sims RJ, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629–639. [PMID:14585615]PubMedGoogle Scholar
  5. 5.
    van Nuland R, Gozani O (2016) Histone H4 lysine 20 (H4K20) methylation, expanding the signaling potential of the proteome one methyl moiety at a time. Mol Cell Proteomics 15:755–764PubMedGoogle Scholar
  6. 6.
    Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert J-P, Roques C, Pandita RK, Paquet E, Herst P, Gingras A-C, Pandita TK, Legube G, Doyon Y, Durocher D, Côté J (2016) The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell 62:409–421PubMedPubMedCentralGoogle Scholar
  7. 7.
    Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW, Dutta S, Appella E, Gozani O, Blum G, Ibáñez G, Rao X, Shum D, Radu C, Djaballah H, Wells MB, Csankovszki G, Custer LM, Ma A, Yu W, Li F, Bleich RM, Herold JM, Butler KV, Norris JL, Korboukh V, Tripathy A, Janzen WP, Arrowsmith CH, Frye SV, Vedadi M, Brown PJ, Jin J, Cleven AH, Al Sannaa GA, Briaire-de Bruijn I, Ingram DR, van de Rijn M, Rubin BP, de Vries MW, Watson KL, Torres KE, Wang W-L, van Duinen SG, Hogendoorn PCW, Lazar AJ, Bovée JVMG, Schaefer I-M, Fletcher CD, Hornick JL, Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y, Gaydos L, Wang W-L, Strome S, Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA, Besaratinia A, Tommasi S, Polo S, Jackson S, Beck DB, Oda H, Shen SS, Reinberg D (2014) PR-set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 300:795069. [PMID:25032507]Google Scholar
  8. 8.
    Besaratinia A, Tommasi S (2014) Epigenetics of human melanoma: promises and challenges. J Mol Cell Biol 6:356–367. [PMID:24895357]PubMedGoogle Scholar
  9. 9.
    Bartke T, Borgel J, DiMaggio PA (2013) Proteomics in epigenetics: new perspectives for cancer research. Brief Funct Genomics 12:205–218. [PMID:23401080]PubMedPubMedCentralGoogle Scholar
  10. 10.
    Chopra M, Bohlander SK (2015) Disturbing the histone code in leukemia: translocations and mutations affecting histone methyl transferases. Cancer Genet 208:192–205. [PMID:25592767]PubMedGoogle Scholar
  11. 11.
    Yamaguchi H, Hung MC (2014) Regulation and role of EZH2 in cancer. Cancer Res Treat 46:209–222. PMID:25038756PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97:1498–1506. [PMID:16234563]PubMedGoogle Scholar
  13. 13.
    Tsai CT, So CWE (2017) Epigenetic therapies by targeting aberrant histone methylome in AML: molecular mechanisms, current preclinical and clinical development. Oncogene 36:1753–1759. [PMID:27593928]PubMedGoogle Scholar
  14. 14.
    Micevic G, Theodosakis N, Bosenberg M (2017) Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics 9:34PubMedPubMedCentralGoogle Scholar
  15. 15.
    Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 149:1204–1225PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chervona Y, Costa M (2012) Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res 2:589–597PubMedPubMedCentralGoogle Scholar
  17. 17.
    Li C, Zhibin H, Liu Z, Wang L-E, Strom SS, Gershenwald JE, Lee JE, Ross MI, Mansfield PF, Cormier JN, Prieto VG, Duvic M, Grimm EA, W Q (2006) Polymorphisms in the DNA repair genes XPC, XPD, and XPG and risk of cutaneous melanoma: a case-control analysis. Cancer Epidemiol Biomark Prev 15:2526–2532Google Scholar
  18. 18.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674Google Scholar
  19. 19.
    Allen CT, Clavijo PE, Van Waes C, Chen Z (2015) Anti-tumor immunity in head and neck cancer: understanding the evidence, how tumors escape and immunotherapeutic approaches. Cancer 7:2397–2414. [PMID:26690220]Google Scholar
  20. 20.
    Watanabe-Fukunaga R, Brannan CI, Itoh N, Yonehara S, Copeland NG, Jenkins NA, Nagata S (1992) The cDNA structure, expression, and chromosomal assignment of the mouse fas antigen. J Immunol 148:1274–1279PubMedGoogle Scholar
  21. 21.
    Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA (2015) Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 35:S5–S24PubMedPubMedCentralGoogle Scholar
  22. 22.
    Putiri EL, Robertson KD (2011) Epigenetic mechanisms and genome stability. Clin Epigenetics 2:299–314. [PMID:21927626]PubMedGoogle Scholar
  23. 23.
    Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, Sommer L, Boyman O (2017) The histone Methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep 20:854–867PubMedGoogle Scholar
  24. 24.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527:1–16. [PMID:26503055]Google Scholar
  25. 25.
    Nagarsheth N, Peng D, Kryczek I, Wu K, Li W, Zhao E, Zhao L, Wei S, Frankel T, Vatan L, Szeliga W, Dou Y, Owens S, Marquez V, Tao K, Huang E, Wang G, Zou W (2016) PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res 76:275–282. [PMID:26567139]PubMedGoogle Scholar
  26. 26.
    Klein BJ, Piao L, Xi Y, Rincon-Arano H, Rothbart SB, Peng D, Wen H, Larson C, Zhang X, Zheng X, Cortazar MA, Peña PV, Mangan A, Bentley DL, Strahl BD, Groudine M, Li W, Shi X, Kutateladze TG (2014) The histone-H3K4-specific Demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep 6:325–335PubMedPubMedCentralGoogle Scholar
  27. 27.
    Paschall AV, Yang D, Lu C, Choi J-H, Li X, Liu F, Figueroa M, Oberlies NH, Pearce C, Bollag WB, Nayak-Kapoor A, Liu K (2015) H3K9 Trimethylation silences Fas expression to confer colon carcinoma immune escape and 5-fluorouracil Chemoresistance. J Immunol 195:1868–1882. PMID:26136424]PubMedPubMedCentralGoogle Scholar
  28. 28.
    Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35:323–332PubMedGoogle Scholar
  29. 29.
    Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stützer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer Fidelity. Mol Cell 53:49–62. [PMID:24289921]PubMedGoogle Scholar
  30. 30.
    Chapman-Rothe N, Curry E, Zeller C, Liber D, Stronach E, Gabra H, Ghaem-Maghami S, Brown R (2013) Chromatin H3K27me3/H3K4me3 histone marks define gene sets in high-grade serous ovarian cancer that distinguish malignant, tumour-sustaining and chemo-resistant ovarian tumour cells. Oncogene 32:4586–4592. [PMID:23128397]PubMedGoogle Scholar
  31. 31.
    Oh EJ, Yang WI, Cheong J-W, Choi S, Yoon SO (2014) Diffuse large B-cell lymphoma with histone H3 trimethylation at lysine 27: another poor prognostic phenotype independent of c-Myc/Bcl2 coexpression. Hum Pathol 45:2043–2050. [PMID:25149548]PubMedGoogle Scholar
  32. 32.
    Cai M-Y, Hou J-H, Rao H-L, Luo R-Z, Li M, Pei X-Q, Lin MC, Guan X-Y, Kung H-F, Zeng Y-X, Xie D (2011) High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 17:12–20. [PMID:20844838]PubMedGoogle Scholar
  33. 33.
    Liu J, Liang L, Huang S, Nong L, Li D, Zhang B, Li T (2019) Aberrant differential expression of EZH2 and H3K27me3 in extranodal NK/T-cell lymphoma, nasal type, is associated with disease progression and prognosis. Hum Pathol 83:166–176. [PMID:30218753]PubMedGoogle Scholar
  34. 34.
    Goto Y, Shinjo K, Kondo Y, Shen L, Toyota M, Suzuki H, Gao W, An B, Fujii M, Murakami H, Osada H, Taniguchi T, Usami N, Kondo M, Hasegawa Y, Shimokata K, Matsuo K, Hida T, Fujimoto N, Kishimoto T, Issa J-PJ, Sekido Y (2009) Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res 69:9073–9082. [PMID:19887624]PubMedGoogle Scholar
  35. 35.
    Wei Y, Xia W, Zhang Z, Liu J, Wang H, Adsay NV, Albarracin C, Yu D, Abbruzzese JL, Mills GB, Bast RC, Hortobagyi GN, Hung M-C, Hung M-C (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47:701–706. [PMID:18176935]PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ngollo M, Lebert A, Daures M, Judes G, Rifai K, Dubois L, Kemeny J-L, Penault-Llorca F, Bignon Y-J, Guy L, Bernard-Gallon D (2017) Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer 17:261PubMedPubMedCentralGoogle Scholar
  37. 37.
    Shields BD, Mahmoud F, Taylor EM, Byrum SD, Koss B, Baldini G, Ransom S, Cline K, Mackintosh SG, Edmondson RD, Shalin S, Tackett AJ (2017) Indicators of responsiveness to immune checkpoint inhibitors. Sci Rep 7(1):807PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hewitt EW (2003) The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110:163–169. [PMID:14511229]PubMedPubMedCentralGoogle Scholar
  39. 39.
    Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T (2016) The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 39:44–51. [PMID:26796069]PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kloetzel PM (2004) Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5(7):661–669PubMedGoogle Scholar
  41. 41.
    Nancy P, Siewiera J, Rizzuto G, Tagliani E, Osokine I, Manandhar P, Dolgalev I, Clementi C, Tsirigos A, Erlebacher A (2018) H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition. J Clin Invest 128:233–247PubMedGoogle Scholar
  42. 42.
    Nancy P, Tagliani E, Tay C-S, Asp P, Levy DE, Erlebacher A (2012) Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 336:1317–1321. [PMID:22679098]PubMedPubMedCentralGoogle Scholar
  43. 43.
    Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702PubMedGoogle Scholar
  44. 44.
    Kim CH (2004) Chemokine-chemokine receptor network in immune cell trafficking. Curr Drug Targets Immune Endocr Metabol Disord 4:343–361. [PMID:15578986]PubMedGoogle Scholar
  45. 45.
    Chow MT, Luster AD (2014) Chemokines in cancer. Cancer Immunol Res 2:1125–1131. [PMID:25480554]PubMedPubMedCentralGoogle Scholar
  46. 46.
    Maric M, Liu Y (1999) Strong cytotoxic T lymphocyte responses to a macrophage inflammatory protein 1α-expressing tumor: linkage between inflammation and specific immunity. Cancer Res 59:5549–5553. [PMID:10416611]PubMedGoogle Scholar
  47. 47.
    Mulé JJ, Custer M, Averbook B, Yang JC, Weber JS, Goeddel DV, Rosenberg SA, Schall TJ (1996) RANTES secretion by gene-modified tumor cells results in loss of Tumorigenicity in vivo: role of immune cell subpopulations. Hum Gene Ther 7:1545–1553. [PMID:8864755]PubMedGoogle Scholar
  48. 48.
    Fushimi T, Kojima A, Moore MA, Crystal RG (2000) Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J Clin Invest 105:1383–1393. [PMID:10811846]PubMedPubMedCentralGoogle Scholar
  49. 49.
    Kondo T, Ito F, Nakazawa H, Horita S, Osaka Y, Toma H (2004) High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. J Urol 171:2171–2175. [PMID:15126779]PubMedGoogle Scholar
  50. 50.
    Groom JR, Richmond J, Murooka TT, Sorensen EW, Sung JH, Bankert K, von Andrian UH, Moon JJ, Mempel TR, Luster AD (2012) CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37:1091–1103. [PMID:23123063]PubMedPubMedCentralGoogle Scholar
  51. 51.
    Fallarino F, Grohmann U, Bianchi R, Vacca C, Fioretti MC, Puccetti P (2000) Th1 and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8+ T cell-dependent tumor eradication in vivo. J Immunol 165:5495–5501. [PMID:11067902]PubMedGoogle Scholar
  52. 52.
    Gu B, Lee M (2013) Histone H3 lysine 4 methyltransferases and demethylases in self-renewal and differentiation of stem cells. Cell Biosci 3:39PubMedPubMedCentralGoogle Scholar
  53. 53.
    Mi L-Z, Chruszcz M, Clines K, Kim Y (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438(7071):1181–1185PubMedGoogle Scholar
  54. 54.
    Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, Patel DJ (2006) Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442:91–95. [PMID:16728978]PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326. [PMID:16630819]PubMedGoogle Scholar
  56. 56.
    Harikumar A, Meshorer E (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 16:1609–1619. [PMID:26553936]PubMedPubMedCentralGoogle Scholar
  57. 57.
    Li X, Liu L, Yang S, Song N, Zhou X, Gao J, Yu N, Shan L, Wang Q, Liang J, Xuan C, Wang Y, Shang Y, Shi L (2014) Histone demethylase KDM5B is a key regulator of genome stability. Proc Natl Acad Sci U S A 111:7096. [PMID:24778210]PubMedPubMedCentralGoogle Scholar
  58. 58.
    Bamodu OA, Huang W-C, Lee W-H, Wu A, Wang LS, Hsiao M, Yeh C-T, Chao T-Y (2016) Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer 16:160. [PMID:26917489]PubMedPubMedCentralGoogle Scholar
  59. 59.
    Han M, Xu W, Cheng P, Jin H, Wang X (2017) Histone demethylase lysine demethylase 5B in development and cancer. Oncotarget 8:8980–8991. [PMID:27974677]PubMedGoogle Scholar
  60. 60.
    Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797. [PMID:20720586]PubMedPubMedCentralGoogle Scholar
  61. 61.
    Becker JS, Nicetto D, Zaret KS (2016) H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 32:29–41. [PMID:26675384]PubMedGoogle Scholar
  62. 62.
    Müller-Tidow C, Klein H-U, Hascher A, Isken F, Tickenbrock L, Thoennissen N, Agrawal-Singh S, Tschanter P, Disselhoff C, Wang Y, Becker A, Thiede C, Ehninger G, zur Stadt U, Koschmieder S, Seidl M, Müller FU, Schmitz W, Schlenke P, McClelland M, Berdel WE, Dugas M, Serve H (2010) Study Alliance leukemia, on behalf of the S. A. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116:3564–3571. [PMID:20498303]PubMedPubMedCentralGoogle Scholar
  63. 63.
    Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferré F, Bourque C, Burke CJ, Turner L, Uong A, Johnson LA, Beroukhim R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA, Zon LI (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513–517. [PMID:21430779]PubMedPubMedCentralGoogle Scholar
  64. 64.
    Marteau J-B, Rigaud O, Brugat T, Gault N, Vallat L, Kruhoffer M, Orntoft TF, Nguyen-Khac F, Chevillard S, Merle-Beral H, Delic J (2010) Concomitant heterochromatinisation and down-regulation of gene expression unveils epigenetic silencing of RELB in an aggressive subset of chronic lymphocytic leukemia in males. BMC Med Genet 3:53. [PMID:21062507]Google Scholar
  65. 65.
    Guetgemann I, Ellinger J (2009) Global histone modifications as a prognostic marker for biochemical recurrence in patients undergoing radical prostatectomy. J Urol 181(4):185–186Google Scholar
  66. 66.
    Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15:1968–1976PubMedGoogle Scholar
  67. 67.
    Paschall AV, Yang D, Lu C, Choi JH, Li X, Liu F, Figueroa M, Oberlies NH, Pearce C, Bollag WB, Nayak-Kapoor A, Liu K (2015) H3K9 trimethylation silences fas expression to confer colon carcinoma immune escape and 5-fluorouracil chemoresistance. J Immunol 195(4):1868–1882PubMedGoogle Scholar
  68. 68.
    Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z, Przybranowski S, White ES, Peters-Golden M (2013) Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis 4:e621–e621PubMedPubMedCentralGoogle Scholar
  69. 69.
    Kägi D, Ledermann B, Bürki K, Zinkernagel RM, Hengartner H (1996) Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 14:207–232PubMedGoogle Scholar
  70. 70.
    Klimova T, Chandel NS (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 15:660–666PubMedGoogle Scholar
  71. 71.
    Sträter J, Hinz U, Hasel C, Bhanot U, Mechtersheimer G, Lehnert T, Möller P (2005) Impaired CD95 expression predisposes for recurrence in curatively resected colon carcinoma: clinical evidence for immunoselection and CD95L mediated control of minimal residual disease. Gut 54:661–665. [PMID:15831912]PubMedPubMedCentralGoogle Scholar
  72. 72.
    Bullani RR, Wehrli P, Viard-Leveugle I, Rimoldi D, Cerottini JC, Saurat JH, Tschopp J, French LE (2002) Frequent downregulation of fas (CD95) expression and function in melanoma. Melanoma Res 12:263–270. [PMID:12140383]PubMedGoogle Scholar
  73. 73.
    Reed J, Hakam A, Nicosia SV, Coppola D (2005) Significance of Fas receptor protein expression in epithelial ovarian cancer. Hum Pathol 36:971–976PubMedGoogle Scholar
  74. 74.
    Hortobagyi GN, Buglioni S, Benevolo M, Giannarelli D, Papaldo P, Cognetti F, Vici P, Di Filippo F, Del Nonno F, Venanzi FM, Natali PG, Mottolese M (2001) Adjuvant systemic therapy for early breast cancer: progress and controversies. Clin Cancer Res 7:1839–1842. [PMID:11448893]PubMedGoogle Scholar
  75. 75.
    Li Y, Xu K-P, Jiang D, Zhao J, Ge J-F, Zheng S-Y (2015) Relationship of Fas, FasL, p53 and bcl-2 expression in human non-small cell lung carcinomas. Int J Clin Exp Pathol 8:13978–13986. [PMID:26823709]PubMedPubMedCentralGoogle Scholar
  76. 76.
    Möller P, Koretz K, Leithäuser F, Brüderlein S, Henne C, Quentmeier A, Krammer PH (1994) Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer 57:371–377PubMedGoogle Scholar
  77. 77.
    Krammer PH (1999) CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol 71:163–210. [PMID:9917913]PubMedGoogle Scholar
  78. 78.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. [PMID:10647931]Google Scholar
  79. 79.
    Roh T-Y, Cuddapah S, Cui K, Zhao K (2006) The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci U S A 103(43):15782–15787PubMedPubMedCentralGoogle Scholar
  80. 80.
    Dunn J, Rao S (2017) Epigenetics and immunotherapy: the current state of play. Mol Immunol 87:227–239PubMedGoogle Scholar
  81. 81.
    Suárez-álvarez B, Raneros AB, Ortega F, López-larrea C (2013) Epigenetic modulation of the immune function: a potential target for tolerance. Epigenetics 8:694–702PubMedPubMedCentralGoogle Scholar
  82. 82.
    Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N, Waterfall JJ, Quivy J, Almouzni G, Amigorena S (2018) The epigenetic control of stemness in CD8 + T cell fate commitment. Science 186:177–186Google Scholar
  83. 83.
    Henning AN, Roychoudhuri R, Restifo NP (2018) Epigenetic control of CD8 + T cell differentiation. Nat Publ Group 18:340–356Google Scholar
  84. 84.
    Thommen DS, Schumacher TN (2018) T cell dysfunction in cancer. Cancer Cell 33(4):547–562PubMedGoogle Scholar
  85. 85.
    Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates B, Tsao H, Godec J, Lafleur MW, Brown FD, Tonnerre P, Chung RT, Tully DC, Allen TM, Frahm N, Lauer GM, Wherry EJ (2016) The epigenetic landscape of T cell exhaustion. Science 354(6316):1165–1169Google Scholar
  86. 86.
    Wu J, Shi H (2017) Unlocking the epigenetic code of T cell exhaustion. Transl Cancer Res 6:384–387Google Scholar
  87. 87.
    Zhang Y, Kinkel S, Maksimovic J, Bandala-Sanchez E, Tanzer MC, Naselli G, Zhang J, Zhan Y, Lew AM, Silke J, Oshlack A, Blewitt ME, Harrison LC (2014) The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124:737–749PubMedGoogle Scholar
  88. 88.
    Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, Wei S, Crespo J, Wan S, Vatan L, Szeliga W, Shao I, Wang Y, Liu Y, Varambally S, Chinnaiyan AM, Welling TH, Marquez V, Kotarski J, Wang H, Wang Z, Zhang Y, Liu R, Wang G, Zou W (2015) Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 17:95–103. [PMID:26523864]PubMedPubMedCentralGoogle Scholar
  89. 89.
    He S, Liu Y, Meng L, Sun H, Wang Y, Ji Y, Purushe J, Chen P, Li C, Madzo J, Issa J-P, Soboloff J, Reshef R, Moore B, Gattinoni L, Zhang Y (2017) Ezh2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumor immunity. Nat Commun 8:2125. [PMID:29242551]PubMedPubMedCentralGoogle Scholar
  90. 90.
    He S, Xie F, Liu Y, Tong Q, Mochizuki K, Lapinski PE, Mani R-S, Reddy P, Mochizuki I, Chinnaiyan AM, Mineishi S, King PD, Zhang Y (2013) The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease. Blood 122:4119–4128. [PMID:24141370]PubMedPubMedCentralGoogle Scholar
  91. 91.
    Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27:109–118PubMedGoogle Scholar
  92. 92.
    Wang D, Quiros J, Mahuron K, Fong L, Bluestone JA, Dupage M (2018) Pharmacological inhibition of EZH2 destabilizes FOXP3 expression and slows tumor growth d genetic disruption of Ezh2 function in Tregs leads to robust anti-tumor immunity d blockade of EZH2 in Tregs reprograms TI-Tregs to gain pro-inflammatory activity. Cell Rep 23:3262–3274PubMedPubMedCentralGoogle Scholar
  93. 93.
    Goswami S, Apostolou I, Zhang J, Skepner J, Anandhan S, Zhang X, Xiong L, Trojer P, Aparicio A, Subudhi SK, Allison JP, Zhao H, Sharma P (2018) Modulation of EZH2 expression in T cells improves efficacy of anti–CTLA-4 therapy. J Clin Invest 128:3813–3818PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Erin M. Taylor
    • 1
  • Brian Koss
    • 1
  • Lauren E. Davis
    • 1
  • Alan J. Tackett
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations