Advertisement

Theranostics pp 137-145 | Cite as

Pharmacogenetics: Role of Single Nucleotide Polymorphisms

  • Emrah Yucesan
  • Nur Ozten
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2054)

Abstract

Genome sequencing methods have basically similar algorithms, although they show a few differences between the platforms. The human genome contains approximately three billion base pairs, and this amount is huge and therefore impossible to sequence at one step. However, this amount is not a problem for developed technology. Researchers break DNA into small random pieces and then sequence and reassemble. Library preparation, sequencing, bioinformatic approaches and reporting. High-quality library preparation is critical and the most important part of the next-generation sequencing workflow. Successful sequencing directly requires high-quality libraries. Sequencing is second step and all high-throughput sequencing approaches are generally based on conventional Sanger sequencing. After preparation of library and sequencing, later steps are completely computer-based (in silico) approaches called as bioinformatics.

Key words

Pharmacogenetics Genetic variants SNPs 

References

  1. 1.
    Alwi ZB (2005) The use of SNPs in pharmacogenomics studies. Malays J Med Sci 12(2):4–12PubMedPubMedCentralGoogle Scholar
  2. 2.
    Peet NP, Bey P (2001) Pharmacogenomics: challenges and opportunities. Drug Discov Today 6(10):495–498CrossRefGoogle Scholar
  3. 3.
    Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405(6788):857–865.  https://doi.org/10.1038/35015728CrossRefPubMedGoogle Scholar
  4. 4.
    Hoehe MR, Kroslak T (2004) Genetic variation and pharmacogenomics: concepts, facts, and challenges. Dialogues Clin Neurosci 6(1):5–26PubMedPubMedCentralGoogle Scholar
  5. 5.
    Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA et al (2006) Pharmacogenomics: challenges and opportunities. Ann Intern Med 145(10):749–757CrossRefGoogle Scholar
  6. 6.
    de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S (2018) Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet.  https://doi.org/10.1007/s40262-018-0644-7CrossRefGoogle Scholar
  7. 7.
    Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L et al (2016) The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol 17:53.  https://doi.org/10.1186/s13059-016-0917-0CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61.  https://doi.org/10.1146/annurev-med-051010-162644CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Meienberg J, Bruggmann R, Oexle K, Matyas G (2016) Clinical sequencing: is WGS the better WES? Hum Genet 135(3):359–362.  https://doi.org/10.1007/s00439-015-1631-9CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A et al (2015) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 112(17):5473–5478.  https://doi.org/10.1073/pnas.1418631112CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J et al (2018) An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol Detect Quantif 15:6–12.  https://doi.org/10.1016/j.bdq.2017.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):951–969.  https://doi.org/10.1101/pdb.top084970CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nalpathamkalam T, Derkach A, Paterson AD, Merico D (2014) Genetic Analysis Workshop 18 single-nucleotide variant prioritization based on protein impact, sequence conservation, and gene annotation. BMC Proc 8.(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo:S11.  https://doi.org/10.1186/1753-6561-8-S1-S11CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Marian AJ (2014) Sequencing your genome: what does it mean? Methodist Debakey Cardiovasc J 10(1):3–6CrossRefGoogle Scholar
  15. 15.
    Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR et al (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56(2):61–64, 66, 68, passim.  https://doi.org/10.2144/000114133CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S et al (2014) Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One 9(5):e98187.  https://doi.org/10.1371/journal.pone.0098187CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Einaga N, Yoshida A, Noda H, Suemitsu M, Nakayama Y, Sakurada A et al (2017) Assessment of the quality of DNA from various formalin-fixed paraffin-embedded (FFPE) tissues and the use of this DNA for next-generation sequencing (NGS) with no artifactual mutation. PLoS One 12(5):e0176280.  https://doi.org/10.1371/journal.pone.0176280CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu L, Li Y, Li S, Hu N, He Y, Pong R et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364.  https://doi.org/10.1155/2012/251364CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941.  https://doi.org/10.1016/j.bbadis.2014.06.015CrossRefPubMedGoogle Scholar
  20. 20.
    Ekblom R, Wolf JB (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7(9):1026–1042.  https://doi.org/10.1111/eva.12178CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74.  https://doi.org/10.1038/nature15393CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hildebrandt F, Heeringa SF, Rüschendorf F, Attanasio M, Nürnberg G, Becker C et al (2009) A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet 5(1):e1000353.  https://doi.org/10.1371/journal.pgen.1000353CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wray NR, Goddard ME, Visscher PM (2007) Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 17(10):1520–1528.  https://doi.org/10.1101/gr.6665407CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Abraham G, Inouye M (2015) Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev 33:10–16.  https://doi.org/10.1016/j.gde.2015.06.005CrossRefPubMedGoogle Scholar
  25. 25.
    Wilkening S, Chen B, Bermejo JL, Canzian F (2009) Is there still a need for candidate gene approaches in the era of genome-wide association studies? Genomics 93(5):415–419.  https://doi.org/10.1016/j.ygeno.2008.12.011CrossRefPubMedGoogle Scholar
  26. 26.
    Patnala R, Clements J, Batra J (2013) Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet 14:39.  https://doi.org/10.1186/1471-2156-14-39CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ball AD, Stapley J, Dawson DA, Birkhead TR, Burke T, Slate J (2010) A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics 11:218.  https://doi.org/10.1186/1471-2164-11-218CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wallace C, Dobson RJ, Munroe PB, Caulfield MJ (2007) Information capture using SNPs from HapMap and whole-genome chips differs in a sample of inflammatory and cardiovascular gene-centric regions from genome-wide estimates. Genome Res 17(11):1596–1602.  https://doi.org/10.1101/gr.5996407CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rüschendorf F, Nürnberg P (2005) ALOHOMORA: a tool for linkage analysis using 10K SNP array data. Bioinformatics 21(9):2123–2125.  https://doi.org/10.1093/bioinformatics/bti264CrossRefPubMedGoogle Scholar
  30. 30.
    Hoffmann K, Lindner TH (2005) easyLINKAGE-Plus—automated linkage analyses using large-scale SNP data. Bioinformatics 21(17):3565–3567.  https://doi.org/10.1093/bioinformatics/bti571CrossRefPubMedGoogle Scholar
  31. 31.
    Inaoka K, Inokawa Y, Nomoto S (2015) Genomic-wide analysis with microarrays in human oncology. Microarrays (Basel) 4(4):454–473.  https://doi.org/10.3390/microarrays4040454CrossRefGoogle Scholar
  32. 32.
    Ballester B, Johnson N, Proctor G, Flicek P (2010) Consistent annotation of gene expression arrays. BMC Genomics 11:294.  https://doi.org/10.1186/1471-2164-11-294CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Karczewski KJ, Daneshjou R, Altman RB (2012) Chapter 7: Pharmacogenomics. PLoS Comput Biol 8(12):e1002817.  https://doi.org/10.1371/journal.pcbi.1002817CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63.  https://doi.org/10.1038/nrg2484CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082CrossRefGoogle Scholar
  36. 36.
    Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78CrossRefGoogle Scholar
  37. 37.
    Kurg A, Tõnisson N, Georgiou I, Shumaker J, Tollett J, Metspalu A (2000) Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet Test 4(1):1–7.  https://doi.org/10.1089/109065700316408CrossRefPubMedGoogle Scholar
  38. 38.
    Gunderson KL, Steemers FJ, Ren H, Ng P, Zhou L, Tsan C et al (2006) Whole-genome genotyping. Methods Enzymol 410:359–376.  https://doi.org/10.1016/S0076-6879(06)10017-8CrossRefPubMedGoogle Scholar
  39. 39.
    DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M et al (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14(4):457–460.  https://doi.org/10.1038/ng1296-457CrossRefPubMedGoogle Scholar
  40. 40.
    LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37(13):4181–4193.  https://doi.org/10.1093/nar/gkp552CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13(10):705–719.  https://doi.org/10.1038/nrg3273CrossRefPubMedGoogle Scholar
  42. 42.
    Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1).  https://doi.org/10.3390/biology5010003CrossRefGoogle Scholar
  43. 43.
    Rew DA (2001) DNA microarray technology in cancer research. Eur J Surg Oncol 27(5):504–508.  https://doi.org/10.1053/ejso.2001.1116CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emrah Yucesan
    • 1
  • Nur Ozten
    • 1
    • 2
  1. 1.Institute of Life Sciences and BiotechnologyBezmialem Vakif UniversityIstanbulTurkey
  2. 2.Department of Pharmaceutical Toxicology, Faculty of PharmacyBezmialem Vakif UniversityIstanbulTurkey

Personalised recommendations