Advertisement

In Vitro Culture of Cryptosporidium parvum Using Hollow Fiber Bioreactor: Applications for Simultaneous Pharmacokinetic and Pharmacodynamic Evaluation of Test Compounds

  • Nigel YarlettEmail author
  • Mary Morada
  • Mohini Gobin
  • Wesley Van Voorhis
  • Samuel Arnold
Protocol
  • 399 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2052)

Abstract

Hollow fiber technology is a powerful tool for the culture of difficult-to-grow cells. Cryptosporidium parvum has a multistage sexual and asexual life cycle that has proved difficult to culture by conventional in vitro culture methods. Here, we describe a method utilizing a hollow fiber bioreactor for the continuous in vitro growth of C. parvum that produces sexual and asexual stages. The method enables the evaluation of potential therapeutic compounds under conditions that mirror the dynamic conditions found in the gut facilitating preliminary pharmacokinetic and pharmacodynamic data to be obtained.

Keywords

Hollow fiber bioreactor Cryptosporidium parvum In vitro culture Pharmacokinetic Pharmacodynamics 

Notes

Acknowledgments

This research was supported by a grant from the Bill and Melinda Gates Foundation.

References

  1. 1.
    Vinayak S, Pawlowic MC, Sateriale A, Brooks CF, Studstill CJ, Bar-Peled Y, Cipriano MJ, Striepen B (2015) Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 523(7561):477–480CrossRefGoogle Scholar
  2. 2.
    Arnold SLM, Choi R, Hulverson MA, Schaefer DA, Vinayak S, Vidadala RSR, McCloskey MC, Whitman GR, Huang W, Barrett LK, Ojo KK, Fan E, Maly DJ Riggs MW, Striepen B, Van Voorhis WC (2017) Necessity of bumped kinase inhibitor gastrointestinal exposure in treating Cryptosporidium infection. J Infect Dis 216(1):55–63CrossRefGoogle Scholar
  3. 3.
    Love MS, Beasley FC, Jumani RS, Wright TM, Chatterjee AK, Huston CD, Schultz PG, McNamara CW (2017) A high throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl Trop Dis 11(2):e0005373CrossRefGoogle Scholar
  4. 4.
    Manjunatha UH, Vinayak S, Zambriski JA, Chao AT, Sy T, Noble CG, Bonamy GMC, Kondreddi RR, Zou B, Gedeck P, Brooks CF, Herbert GT, Sateriale A, Tandel J, Noh S, Lakshminarayana SB, Lim SH, Goodman LB, Bodenreider C, Feng G, Zhang L, Blasco F, Wagner J, Leong FJ, Striepen B, Diagana TT (2017) A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature 546(7658):376–380CrossRefGoogle Scholar
  5. 5.
    Baydoun M, Vanneste SB, Creusy C, Guyot K, Gantois N, Chabe M, Delaire B, Mouray A, Baydoun A (2017) Three dimensional (3D) culture of adult murine colon as an in vitro model of cryptosporidiosis: proof of concept. Sci Rep 7(1):17288CrossRefGoogle Scholar
  6. 6.
    DeCicco RePass MA, Chen Y, Lin Y, Zhou W, Kaplan DL, Ward HD (2017) Novel bioengineered three dimensional human intestinal model for long-term infection of Cryptosporidium parvum. Infect Immun 85(3):e00731–e00716CrossRefGoogle Scholar
  7. 7.
    Morada M, Lee S, Gunther-Cummins L, Weiss LM, Widmer G, Tzipori S, Yarlett N (2016) Continuous culture of Cryptosporidium parvum using hollow fiber technology. Int J Parasitol 46(1):21–29CrossRefGoogle Scholar
  8. 8.
    Yarlett N, Morada M (2018) Long-term in vitro culture of Cryptosporidium parvum. Bio-Protocol 8(15):e2947.  https://doi.org/10.21769/BioProtoc.2947CrossRefGoogle Scholar
  9. 9.
    Venczel LV, Arrowood MJ, Hurd M, Sobsey MD (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringes spores by a mixed-oxidant disinfectant and by free chlorine. Appl Environ Microbiol 63(4):1598–1601CrossRefGoogle Scholar
  10. 10.
    Hulverson MA, Choi R, Arnold SLM, Schaefer DA, Hemphill A, McCloskey MC, Betzer DP, Müller J, Vidadala RSR, Whitman GR, Rivas KL, Barrett LK, Hackman RC, Love MS, McNamara CW, Shaughnessy TK, Kondratiuk A, Kurnick M, Banfor PN, Lynch JJ, Van Voorhis WC (2017) Advances in bumped kinase inhibitors for human and animal therapy for cryptosporidiosis. Int J Parasitol 47(12):753–763CrossRefGoogle Scholar
  11. 11.
    Zhang H, Zhu G (2015) Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro. Front Microbiol 6:991.  https://doi.org/10.3389/fmicb.2015.00991CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hulverson MA, Vinayak S, Choi R, Schaefer DA, Castellanos-Gonzalez A, Vidadala RSR, Brooks CF, Herbert GT, Betzer DP, Whitman GR, Sparks HN, Arnold SLM, Rivas KL, Barrett LK, White AC Jr, Maly DJ, Riggs MW, Striepen B, Van Voorhis WC, Ojo KK (2017) Bumped-kinase inhibitors for cryptosporidiosis therapy. J Infect Dis 215:1275–1284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Nigel Yarlett
    • 1
    • 2
    Email author
  • Mary Morada
    • 1
  • Mohini Gobin
    • 1
  • Wesley Van Voorhis
    • 3
  • Samuel Arnold
    • 3
  1. 1.Haskins LaboratoriesPace UniversityNew YorkUSA
  2. 2.The Department of Chemistry and Physical ChemistryPace UniversityNew YorkUSA
  3. 3.Division of Allergy and Infectious Disease, Department of Medicine, The Center for Emerging and Re-emerging Infectious DiseasesUniversity of WashingtonSeattleUSA

Personalised recommendations