Advertisement

Next-Generation Genome-Scale Models Incorporating Multilevel ‘Omics Data: From Yeast to Human

  • Tunahan Çakır
  • Emel Kökrek
  • Gülben Avşar
  • Ecehan Abdik
  • Pınar PirEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)

Abstract

Genome-scale modelling in eukaryotes has been pioneered by the yeast Saccharomyces cerevisiae. Early metabolic networks have been reconstructed based on genome sequence and information accumulated in the literature on biochemical reactions. Protein–protein interaction networks have been constructed based on experimental observations such as yeast-2-hybrid method. Gene regulatory networks were based on a variety of data types, including information on TF-promoter binding and gene coexpression. The aforementioned networks have been improved gradually, and methods for their integration were developed. Incorporation of omics data including genomics, metabolomics, transcriptomics, fluxome, and phosphoproteome led to next-generation genome-scale models. The methods tested on yeast have later been implemented in human, further, cellular components found to be important in yeast physiology under (ab)normal conditions, and (dis)regulation mechanisms in yeast shed light to the healthy and disease states in human. This chapter provides a historical perspective on next-generation genome-scale models incorporating multilevel ‘omics data, from yeast to human.

Key words

Data integration Transcriptional regulatory networks Metabolic networks Protein–protein interaction networks Transcriptomics Proteomics Metabolomics 

Notes

Acknowledgments

This work was financially supported by The Turkish Academy of Sciences—Outstanding Young Scientists Award Program (TUBA-GEBIP) and TÜBİTAK BİDEB 2232 Programme (116C062).

References

  1. 1.
    Mohammadi S, Saberidokht B, Subramaniam S, Grama A (2015) Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst Biol 9:96PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Castrillo JI, Oliver SG (2004) Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics. BMB Rep 37:93–106CrossRefGoogle Scholar
  3. 3.
    Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Schwikowski B, Uetz P, Fields S (2000) A network of protein–protein interactions in yeast. Nat Biotechnol 18:1257PubMedCrossRefGoogle Scholar
  5. 5.
    Lee TI et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804CrossRefPubMedGoogle Scholar
  6. 6.
    Famili I, Förster J, Nielsen J, Palsson BO (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci 100:13134PubMedCrossRefGoogle Scholar
  7. 7.
    Nookaew I, Olivares-Hernández R, Bhumiratana S, Nielsen J (2011) Genome-scale metabolic models of Saccharomyces cerevisiae. In: Castrillo JI, Oliver SG (eds) Yeast systems biology. Springer, New York, NY, pp 445–463CrossRefGoogle Scholar
  8. 8.
    Österlund T, Nookaew I, Nielsen J (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30:979–988PubMedCrossRefGoogle Scholar
  9. 9.
    Raman K (2010) Construction and analysis of protein–protein interaction networks. Automat Exp 2:2CrossRefGoogle Scholar
  10. 10.
    Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kim TM, Park PJ (2011) Advances in analysis of transcriptional regulatory networks. Wiley Interdiscip Rev Syst Biol Med 3:21–35PubMedCrossRefGoogle Scholar
  12. 12.
    Chiappino-Pepe A, Pandey V, Ataman M, Hatzimanikatis V (2017) Integration of metabolic, regulatory and signaling networks towards analysis of perturbation and dynamic responses. Curr Opin Syst Biol 2:59–66CrossRefGoogle Scholar
  13. 13.
    Gonçalves E et al (2013) Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol BioSyst 9:1576–1583PubMedCrossRefGoogle Scholar
  14. 14.
    Yugi K et al (2014) Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep 8:1171–1183PubMedCrossRefGoogle Scholar
  15. 15.
    Mitra K, Carvunis A-R, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14:719PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yugi K, Kubota H, Hatano A, Kuroda S (2016) Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol 34:276–290.  https://doi.org/10.1016/j.tibtech.2015.12.013CrossRefPubMedGoogle Scholar
  17. 17.
    Marbach D et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Koch C et al (2017) Inference and evolutionary analysis of genome-scale regulatory networks in large phylogenies. Cell Syst 4:543–558. e548PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci 107:17845–17850PubMedCrossRefGoogle Scholar
  20. 20.
    Chandrasekaran S, Price ND (2013) Metabolic constraint-based refinement of transcriptional regulatory networks. PLoS Comput Biol 9:e1003370PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zomorrodi AR, Maranas CD (2010) Improving the i MM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 4:178PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Abdulrehman D et al (2010) YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res 39:D136–D140PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fendt SM, Oliveira AP, Christen S, Picotti P, Dechant RC, Sauer U (2010) Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol Syst Biol 6:432PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15:1421–1430PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wang Z et al (2017) Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast. PLoS Comput Biol 13:e1005489PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bonneau R et al (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell 131:1354–1365PubMedCrossRefGoogle Scholar
  27. 27.
    Mo ML, Palsson BØ, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Heavner BD, Smallbone K, Price ND, Walker LP (2013) Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database 2013:bat059PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Aung HW, Henry SA, Walker LP (2013) Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol 9:215–228CrossRefGoogle Scholar
  30. 30.
    Gonçalves E et al (2017) Systematic analysis of transcriptional and post-transcriptional regulation of metabolism in yeast. PLoS Comput Biol 13:e1005297PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wanichthanarak K, Wongtosrad N, Petranovic D (2015) Genome-wide expression analyses of the stationary phase model of ageing in yeast. Mech Ageing Dev 149:65–74PubMedCrossRefGoogle Scholar
  32. 32.
    Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41:4378–4391PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Beisser D, Klau GW, Dandekar T, Müller T, Dittrich MT (2010) BioNet: an R-package for the functional analysis of biological networks. Bioinformatics 26:1129–1130PubMedCrossRefGoogle Scholar
  34. 34.
    Szklarczyk D et al (2010) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Miles S, Li L, Davison J, Breeden LL (2013) Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. PLoS Genet 9:e1003854PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jouhten P et al (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN. PK113-1A. BMC Syst Biol 2:60PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rintala E, Toivari M, Pitkänen J-P, Wiebe MG, Ruohonen L, Penttilä M (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 10:461PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wiebe MG et al (2007) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 8:140–154PubMedCrossRefGoogle Scholar
  39. 39.
    Lindfors E, Jouhten P, Oja M, Rintala E, Orešič M, Penttilä M (2014) Integration of transcription and flux data reveals molecular paths associated with differences in oxygen-dependent phenotypes of Saccharomyces cerevisiae. BMC Syst Biol 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lindfors E, Gopalacharyulu PV, Halperin E, Orešič M (2009) Detection of molecular paths associated with insulitis and type 1 diabetes in non-obese diabetic mouse. PLoS One 4:e7323PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jouhten P, Wiebe M, Penttilä M (2012) Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. FEBS J 279:3338–3354PubMedCrossRefGoogle Scholar
  42. 42.
    Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5–an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Breitkreutz A et al (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328:1043–1046PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in hit-and-run sampling. Oper Res 46:84–95CrossRefGoogle Scholar
  45. 45.
    Tiranti V et al (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63:1609–1621PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bork P, Jensen LJ, Von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299PubMedCrossRefGoogle Scholar
  47. 47.
    Perocchi F, Mancera E, Steinmetz LM (2008) Systematic screens for human disease genes, from yeast to human and back. Mol BioSyst 4:18–29PubMedCrossRefGoogle Scholar
  48. 48.
    Petranovic D, Nielsen J (2008) Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 26:584–590PubMedCrossRefGoogle Scholar
  49. 49.
    Roy S, Lagree S, Hou Z, Thomson JA, Stewart R, Gasch AP (2013) Integrated module and gene-specific regulatory inference implicates upstream signaling networks. PLoS Comput Biol 9:e1003252PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ravasi T et al (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Consortium U (2011) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75CrossRefGoogle Scholar
  53. 53.
    Hu J et al (2014) Global analysis of phosphorylation networks in humans. Biochim Biophys Acta 1844:224–231PubMedCrossRefGoogle Scholar
  54. 54.
    Newman RH et al (2013) Construction of human activity-based phosphorylation networks. Mol Syst Biol 9:655PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chasman D et al (2014) Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Mol Syst Biol 10:759PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wall D, Fraser H, Hirsh A (2003) Detecting putative orthologs. Bioinformatics 19:1710–1711PubMedCrossRefGoogle Scholar
  58. 58.
    Khurana V et al (2017) Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific molecular pathways. Cell Syst 4:157–170. e114PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE (2011) An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12:357PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol 29:613–624CrossRefGoogle Scholar
  62. 62.
    Hou J, Acharya L, Zhu D, Cheng J (2015) An overview of bioinformatics methods for modeling biological pathways in yeast. Brief Funct Genomics 15:95–108PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yan J, Risacher SL, Shen L, Saykin AJ (2017) Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 19(6):1370–1381PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tunahan Çakır
    • 1
  • Emel Kökrek
    • 1
  • Gülben Avşar
    • 1
  • Ecehan Abdik
    • 1
  • Pınar Pir
    • 1
    Email author
  1. 1.Computational Systems Biology Group, Department of BioengineeringGebze Technical UniversityKocaeliTurkey

Personalised recommendations