Advertisement

RNA Stable Isotope Probing (RNA-SIP)

  • Noor-Ul-Huda Ghori
  • Benjamin Moreira-Grez
  • Paton Vuong
  • Ian Waite
  • Tim Morald
  • Michael Wise
  • Andrew S. WhiteleyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2046)

Abstract

Stable isotope probing is a combined molecular and isotopic technique used to probe the identity and function of uncultivated microorganisms within environmental samples. Employing stable isotopes of common elements such as carbon and nitrogen, RNA-SIP exploits an increase in the buoyant density of RNA caused by the active metabolism and incorporation of heavier mass isotopes into the RNA after cellular utilization of labeled substrates pulsed into the community. Labeled RNAs are subsequently separated from unlabeled RNAs by density gradient centrifugation followed by identification of the RNAs by sequencing. Therefore, RNA stable isotope probing is a culture-independent technique that provides simultaneous information about microbiome community, composition and function. This chapter presents the detailed protocol for performing an RNA-SIP experiment, including the formation, ultracentrifugation, and fractional analyses of stable isotope-labeled RNAs extracted from environmental samples.

Key words

RNA-SIP 16S rRNA Gradient centrifugation Community diversity Community function Isotope-labeled substrate 

Notes

Acknowledgments

The authors wish to thank all the investigators over the years who have played a role in developing RNA-SIP as a method, especially professors Mike Manefield, Tillmann Lüeders, and Dr. Ian Douglas of Beckman Coulter. Particular thanks go to Professor Colin Murrell for stimulating discussions over the years on stable isotope enhanced microbial ecology. The Molecular Microbial Ecology Laboratory at UWA is funded by a range of sources, including the Australian Research Council Linkage Program (LP150101111 to A.S.W.), The Australia China Joint Research Centre (A.S.W., I.W.), a Chilean BECAS scholarship (B.M.G.), and a UWA IPRS scholarship (N.H.G.).

References

  1. 1.
    Dumont MG, Murrell JC (2005) Innovation: stable isotope probing—linking microbial identity to function. Nat Rev Microbiol 3:499–504.  https://doi.org/10.1038/nrmicro1162CrossRefPubMedGoogle Scholar
  2. 2.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090.  https://doi.org/10.1073/PNAS.74.11.5088CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amann RI, Ludwig WSK (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  4. 4.
    Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218.  https://doi.org/10.1099/00221287-61-2-205CrossRefPubMedGoogle Scholar
  5. 5.
    Huber H, Thomm M, Königw H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50.  https://doi.org/10.1007/BF00690816CrossRefGoogle Scholar
  6. 6.
    Radajewski S, McDonald IR, Murrell JC (2003) Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotechnol 14:296–302.  https://doi.org/10.1016/S0958-1669(03)00064-8CrossRefPubMedGoogle Scholar
  7. 7.
    Hugenholtz P, Goebel BMPN (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedPubMedCentralGoogle Scholar
  8. 8.
    Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649.  https://doi.org/10.1038/35001054CrossRefPubMedGoogle Scholar
  9. 9.
    Neufeld JD, Dumont MG, Vohra J, Murrell JC (2007) Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 53:435–442.  https://doi.org/10.1007/s00248-006-9125-xCrossRefPubMedGoogle Scholar
  10. 10.
    Boschker HTS, Nold SC, Wellsbury P, Bos D de GW, Pel R, Parkes RJCTE (1998) Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392:801–805CrossRefGoogle Scholar
  11. 11.
    Whiteley AS, Manefield M, Lueders T (2006) Unlocking the ‘microbial black box’ using RNA-based stable isotope probing technologies. Curr Opin Biotechnol 17:67–71.  https://doi.org/10.1016/J.COPBIO.2005.11.002CrossRefPubMedGoogle Scholar
  12. 12.
    Whiteley AS, Thomson B, Lueders T, Manefield M (2007) RNA stable-isotope probing. Nat Protoc 2:838–844.  https://doi.org/10.1038/nprot.2007.115CrossRefPubMedGoogle Scholar
  13. 13.
    Huang WE, Ferguson A, Singer AC, Lawson K, Thompson IP, Kalin RM, Larkin MJ, Bailey MJ, Whiteley AS (2009) Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell raman-fluorescence in situ hybridization. Appl Environ Microbiol 75:234–241.  https://doi.org/10.1128/AEM.01861-08CrossRefPubMedGoogle Scholar
  14. 14.
    Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373.  https://doi.org/10.1128/AEM.68.11.5367-5373.2002CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ostle N, Whiteley AS, Bailey MJ, Sleep D, Ineson P, Manefield M (2003) Active microbial RNA turnover in a grassland soil estimated using a 13CO2 spike. Soil Biol Biochem 35:877–885.  https://doi.org/10.1016/S0038-0717(03)00117-2CrossRefGoogle Scholar
  16. 16.
    Manefield M, Griffiths RI, Leigh MB, Fisher R, Whiteley AS (2005) Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ Microbiol 7:715–722.  https://doi.org/10.1111/j.1462-2920.2004.00746.xCrossRefPubMedGoogle Scholar
  17. 17.
    Schwarz A, Adetutu EM, Juhasz AL, Aburto-Medina A, Ball AS, Shahsavari E (2017) Microbial degradation of phenanthrene in pristine and contaminated sandy soil. Microb Ecol 75(4):888–902CrossRefGoogle Scholar
  18. 18.
    Liu P, Pommerenke B, Conrad R (2018) Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil. Environ Microbiol 20:337–354.  https://doi.org/10.1111/1462-2920.14001CrossRefPubMedGoogle Scholar
  19. 19.
    Lueders T, Pommerenke B, Friedrich MW (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70(10):5778–5786CrossRefGoogle Scholar
  20. 20.
    Lueders T, Manefield M, Friedrich MW (2003) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78.  https://doi.org/10.1046/j.1462-2920.2003.00536.xCrossRefGoogle Scholar
  21. 21.
    Lueders T, Kindler R, Miltner A, Friedrich MW, Kaestner M (2006) Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl Environ Microbiol 72:5342–5348CrossRefGoogle Scholar
  22. 22.
    Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491.  https://doi.org/10.1128/AEM.66.12.5488-5491.2000CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Murrel JC, Whiteley AS (2010) Stable isotope probing and related technologies. American Society for Microbiology Press, Washington, DCGoogle Scholar
  24. 24.
    Bradford LM, Vestergaard G, Táncsics A, Zhu B, Schloter M, Lueders T (2018) Transcriptome-stable isotope probing provides targeted functional and taxonomic insights into microaerobic pollutant-degrading aquifer microbiota. Front Microbiol 9:2696.  https://doi.org/10.3389/fmicb.2018.02696CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703.  https://doi.org/10.1128/JB.173.2.697-703.1991CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stubner S (2002) Enumeration of 16S rDNA of desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen™ detection. J Microbiol Methods 50:155–164.  https://doi.org/10.1016/S0167-7012(02)00024-6CrossRefPubMedGoogle Scholar
  27. 27.
    Lueders T, Wagner B, Claus P, Friedrich MW (2004) Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 6(1):60–72CrossRefGoogle Scholar
  28. 28.
    Manefield M, Whiteley AS, Ostle N, Ineson P, Bailey MJ (2002) Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. Rapid Commun Mass Spectrom 16:2179–2183.  https://doi.org/10.1002/rcm.782CrossRefPubMedGoogle Scholar
  29. 29.
    Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9:1878–1889.  https://doi.org/10.1111/j.1462-2920.2007.01352.xCrossRefPubMedGoogle Scholar
  30. 30.
    Read D, Huang WE, Whiteley AS (2015) Single cell microbial ecophysiology with Raman-FISH. Springer, Berlin, pp 65–76Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Noor-Ul-Huda Ghori
    • 1
  • Benjamin Moreira-Grez
    • 1
  • Paton Vuong
    • 1
  • Ian Waite
    • 1
  • Tim Morald
    • 1
  • Michael Wise
    • 2
  • Andrew S. Whiteley
    • 1
    • 3
    Email author
  1. 1.Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE)The University of Western AustraliaCrawleyAustralia
  2. 2.Department of Computer Science and EngineeringThe University of Western AustraliaPerthAustralia
  3. 3.Faculty of ScienceThe University of Western AustraliaCrawleyAustralia

Personalised recommendations