Advertisement

Stable Isotope Probing of Microbiota Structure and Function in the Plant Rhizosphere

  • Wafa Achouak
  • Feth el Zahar HaicharEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2046)

Abstract

Stable isotope probing of microbial nucleic acids applied in the rhizosphere enables (a) the identification of the active microbial community involved in root exudate assimilation and those involved in soil organic matter degradation, and (b) the study of the impact of plants via root exudates on the in situ expression of microbial functions. By incubating plants under 13CO2, fresh carbon exuded by the plant will be labeled and hence the microbial community assimilating 13C-root exudates will incorporate 13C into their cellular macromolecules. Labeled DNA, RNA, and proteins can be used to identify microorganisms that assimilated the root exudates. We provide a step-by-step protocol on how to apply stable isotope probing of DNA and RNA in the plant rhizosphere to identify the active microbial communities and analyze their gene expression.

Key words

Stable isotope probing 13CO2 plant labeling Root-adhering soil Root system Root exudates DNA RNA CsCl equilibrium density-gradient centrifugation Isotope Ratio mass spectrometry 16S rRNA 18S rRNA 

Notes

Acknowledgments

We thank French National Research Agency (ANR-18-CE32-0005, DIORE) for providing funding to the project.

References

  1. 1.
    Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95CrossRefGoogle Scholar
  2. 2.
    Haichar FZ, Santaella C, Heulin T et al (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80CrossRefGoogle Scholar
  3. 3.
    Knief C, Delmotte N, Chaffron S et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390CrossRefGoogle Scholar
  4. 4.
    Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  5. 5.
    Hiltner L (1904) Uber neuere Erfahrungen und Problem auf dem gebiet der Bod- enbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brachte. Arb Dt Landwges 98:59e78Google Scholar
  6. 6.
    Guyonnet JP, Vautrin F, Meiffren G et al (2017) The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiol Ecol 93(4):fix022CrossRefGoogle Scholar
  7. 7.
    Guyonnet JP, Cantarel AAM, Simon L et al (2018) Root exudation rate as a functional trait involved in plant nutrient-use strategy classification. Ecol Evol 8(16):8573–8581CrossRefGoogle Scholar
  8. 8.
    Dumont MG, Murrell JC (2005) Stable isotope probing linking microbial identity to function. Nat Rev Microbiol 3:499–504CrossRefGoogle Scholar
  9. 9.
    Prosser JI, Rangel-Castro JI, Killhman K (2006) Studying plant-microbe interactions using stable isotope technologies. Curr Opin Biotechnol 17:98–102CrossRefGoogle Scholar
  10. 10.
    Haichar FZ, Heulin T, Guyonnet JP et al (2016) Stable isotope probing of carbon flow in the plant holobiont. Curr Opin Biotechnol 41:9–13CrossRefGoogle Scholar
  11. 11.
    Haichar FZ, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230CrossRefGoogle Scholar
  12. 12.
    Bressan M, Roncato MA, Bellvert F et al (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257CrossRefGoogle Scholar
  13. 13.
    Rangel-Castro JI, Killham K, Ostle N et al (2005) Stable isotope probing analysis of the influence of liming on root exudates utilization by soil microorganisms. Environ Microbiol 7:828–838CrossRefGoogle Scholar
  14. 14.
    Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science 309:1088–1090CrossRefGoogle Scholar
  15. 15.
    Vandenkoornhuyse P, Mahe S, Ineson P et al (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Natl Acad Sci U S A 104:16970–16975CrossRefGoogle Scholar
  16. 16.
    Haichar FZ, Roncato MA, Achouak W (2012) Stable isotope probing of bacterial community structure and gene expression in the rhizosphere of Arabidopsis thaliana. FEMS Microbiol Ecol 81:291–302CrossRefGoogle Scholar
  17. 17.
    Ranjard L, Lejon DPH, Mougel C et al (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120CrossRefGoogle Scholar
  18. 18.
    Manefield M, Whiteley AS, Griffiths RI et al (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373CrossRefGoogle Scholar
  19. 19.
    Bernard L, Mougel C, Maron PA et al (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9:752–764CrossRefGoogle Scholar
  20. 20.
    Haichar FZ, Achouak W, Christen R et al (2007) Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol 9:625–634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix Marseille University, CNRS, CEA, UMR 7265 BVME, LEMIRE, ECCOREV FR 3098Saint-Paul-lez-DuranceFrance
  2. 2.Laboratoire d’Ecologie MicrobienneUniversity of Lyon, Université Claude Bernard Lyon 1, UMR INRA 1418, UMR CNRS 5557Villeurbanne CedexFrance

Personalised recommendations