Advertisement

Stable Isotope Probing Techniques and Methodological Considerations Using 15N

  • Roey AngelEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2046)

Abstract

Nitrogen fixation and assimilation processes are vital to the functioning of any ecosystem. Nevertheless, studying these processes using 15N-based stable isotope probing was so far limited because of technical challenges related to the relative rarity of nitrogen in nucleic acids and proteins compared to carbon, and because of its absence in lipids. However, the recent adoption of high-throughput sequencing and statistical modelling methods to SIP studies increased the sensitivity of the method and enabled overcoming some of the challenges. This chapter describes in detail how to perform DNA- and RNA-SIP using 15N.

Key words

Nitrogen 15DNA-SIP RNA-SIP Amplicon sequencing BNF Diazotrophs 

Notes

Acknowledgments

The manuscript for this chapter was written online using Authorea. RA was supported by BC CAS, ISB and SoWa RI (MEYS; projects LM2015075, EF16_013/0001782—SoWa Ecosystems Research).

References

  1. 1.
    Fenchel T, King GM, Blackburn TH (2012) Bacterial metabolism. In: Bacterial biogeochemistry. Elsevier, Boston, MA, pp 1–34Google Scholar
  2. 2.
    Madigan MT, Bender KS, Buckley DH et al (2017) Chapter 14: metabolic diversity of microorganisms. In: Brock biology of microorganisms, 15th edn. Pearson, New York, pp 428–481Google Scholar
  3. 3.
    Fisher K, Newton WE (2002) Nitrogen fixation a general overview. In: Nitrogen fixation at the millennium. Elsevier, Amsterdam, pp 1–34Google Scholar
  4. 4.
    Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386PubMedPubMedCentralGoogle Scholar
  5. 5.
    Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631CrossRefGoogle Scholar
  6. 6.
    Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78.  https://doi.org/10.1046/j.1462-2920.2003.00536.xCrossRefGoogle Scholar
  7. 7.
    Birnie GD, Rickwood D (1978) Isopycnic centrifugation in ionic media. In: Birnie GD, Rickwood D (eds) Centrifugal separations: molecular and cell biology. Butterworth & Co Publishers Ltd, London, pp 169–217CrossRefGoogle Scholar
  8. 8.
    Angel R, Panhölzl C, Gabriel R et al (2018) Application of stable-isotope labelling techniques for the detection of active diazotrophs. Environ Microbiol 20:44–61.  https://doi.org/10.1111/1462-2920.13954CrossRefGoogle Scholar
  9. 9.
    Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2007) Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density. Appl Environ Microbiol 73:3189–3195.  https://doi.org/10.1128/aem.02609-06CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pepe-Ranney C, Koechli C, Potrafka R et al (2015) Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J 10:287–298.  https://doi.org/10.1038/ismej.2015.106CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Addison SL, McDonald IR, Lloyd-Jones G (2010) Stable isotope probing: technical considerations when resolving 15N-labeled RNA in gradients. J Microbiol Methods 80:70–75.  https://doi.org/10.1016/j.mimet.2009.11.002CrossRefPubMedGoogle Scholar
  12. 12.
    McDonald IR, Radajewski S, Murrell JC (2005) Stable isotope probing of nucleic acids in methanotrophs and methylotrophs: a review. Org Geochem 36:779–787.  https://doi.org/10.1016/j.orggeochem.2005.01.005CrossRefGoogle Scholar
  13. 13.
    DeRito CM, Pumphrey GM, Madsen EL (2005) Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl Environ Microbiol 71:7858–7865.  https://doi.org/10.1128/aem.71.12.7858-7865.2005CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Ecological Studies. Springer, Berlin, pp 241–261Google Scholar
  15. 15.
    Adam B, Klawonn I, Svedén JB et al (2015) N2-fixation ammonium release and N-transfer to the microbial and classical food web within a plankton community. ISME J 10:450–459.  https://doi.org/10.1038/ismej.2015.126CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2007) Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl Environ Microbiol 73:3196–3204.  https://doi.org/10.1128/aem.02610-06CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Alonso-Pernas P, Bartram S, Arias-Cordero EM et al (2017) In vivo isotopic labeling of symbiotic bacteria involved in cellulose degradation and nitrogen recycling within the gut of the forest cockchafer (Melolontha hippocastani). Front Microbiol 8:1970.  https://doi.org/10.3389/fmicb.2017.01970CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bell TH, Yergeau E, Martineau C et al (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using 15N DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171.  https://doi.org/10.1128/aem.00172-11CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Morrissey EM, Mau RL, Schwartz E et al (2018) Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol 20:1112–1119.  https://doi.org/10.1111/1462-2920.14051CrossRefGoogle Scholar
  20. 20.
    Angel R, Angel R (2012) Total nucleic acid extraction from soil. Protoc Exch 10.  https://doi.org/10.1038/protex.2012.046
  21. 21.
    Dabundo R, Lehmann MF, Treibergs L et al (2014) The contamination of commercial 15N2 gas stocks with 15N–labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS One 9:e110335.  https://doi.org/10.1371/journal.pone.0110335CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lueders T, Manefield M, Friedrich MW (2003) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78.  https://doi.org/10.1046/j.1462-2920.2003.00536.xCrossRefGoogle Scholar
  23. 23.
    Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 13:757–764.  https://doi.org/10.1111/1758-2229.12078CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Soil and Water Research Infrastructure and Institute of Soil BiologyBiology Centre CASČeské BudějoviceCzech Republic

Personalised recommendations