Advertisement

Characterization of Alzheimer’s Disease Micro-RNA Profile in Exosome-Enriched CSF Samples

  • Javier Riancho
  • Ana Santurtun
  • Pascual Sánchez-Juan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2044)

Abstract

Micro-RNAs (miRNAs) are small endogenous noncoding ribonucleic acids that modulate gene expression at a post-transcriptional level. miRNAs have been postulated as potential biomarkers and therapeutic targets in a wide list of human diseases including cancer, autoimmune, cardiovascular, and neurodegenerative diseases. miRNAs are secreted by the cells into exosomes. These are small cell-derived membrane vesicles that can be isolated from many body fluids including urine, saliva, blood, and cerebrospinal fluid (CSF). Exosomes contain a variety of proteins and noncoding RNAs and seem to play an important role in cell–cell communication and the regulation of immune response and other body functions. In this chapter, we will discuss the sequential procedure to characterize the miRNA profile in exosome-enriched CSF samples.

Key words

Alzheimer’s disease Cerebrospinal fluid Exosomes Micro-RNAs 

References

  1. 1.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524CrossRefGoogle Scholar
  2. 2.
    Riancho J, Del Real A, Riancho JA (2016) How to interpret epigenetic association studies: a guide for clinicians. Bonekey Rep 5:797CrossRefGoogle Scholar
  3. 3.
    Erson AE, Petty EM (2008) MicroRNAs in development and disease. Clin Genet 74:296–306CrossRefGoogle Scholar
  4. 4.
    Riancho J, Vazquez-Higuera JL, Pozueta A, Lage C, Kazimierczak M, Bravo M et al (2017) MicroRNA profile in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J Alzheimers Dis 57:483–491CrossRefGoogle Scholar
  5. 5.
    Properzi F, Ferroni E, Poleggi A, Vinci R (2015) The regulation of exosome function in the CNS: implications for neurodegeneration. Swiss Med Wkly 145:w14204PubMedGoogle Scholar
  6. 6.
    Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379:958–966CrossRefGoogle Scholar
  7. 7.
    Riancho J, Sanchez-Juan P (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379:2180PubMedGoogle Scholar
  8. 8.
    Kalani A, Tyagi A, Tyagi N (2014) Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 49:590–600CrossRefGoogle Scholar
  9. 9.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefGoogle Scholar
  10. 10.
    Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122CrossRefGoogle Scholar
  11. 11.
    Bateman R (2015) Alzheimer’s disease and other dementias: advances in 2014. Lancet Neurol 14:4–6CrossRefGoogle Scholar
  12. 12.
    Lewczuk P, Kornhuber J, Wiltfang J (2006) The German competence net dementias: standard operating procedures for the neurochemical dementia diagnostics. J Neural Transm (Vienna) 113:1075–1080CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Javier Riancho
    • 1
  • Ana Santurtun
    • 2
  • Pascual Sánchez-Juan
    • 3
  1. 1.Service of Neurology, Hospital SierrallanaIDIVAL-CIBERNEDTorrelavegaSpain
  2. 2.Department of Physiology and Pharmacology, IDIVALUniversity of CantabriaSantanderSpain
  3. 3.Service of NeurologyUniversity Hospital Marques de Valdecilla-IDIVAL.CIBERNEDSantanderSpain

Personalised recommendations